No Image

Что такое unicode и каковы его перспективы

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Ответы на вопрос

var n, c, d, e, k : integer;

wtite (‘введите 3-х значное число n =’);

d : = (n div 10) mod 10;

k: = 100*e + 10*d + c;

if n = k then write (‘палиндром’) else write(‘не палиндром’)

dpi – точек на дюйм

каждая точка кодируется 2-мя байтами

всего 30999938 байт

1 мегабайт = 1024*1024=1048576

на картинку 29,56 мегабайта

1 килобайт = 1024 байта

картинка займет 20000/1024=19,5 килобайта

ps а вообще, каждое нужно писать отдельно

program a1; const n=20; var c: array [1..100] of integer; var i,k: integer; begink: =0; for i: =1 to n do beginc[i]: =random(101)-50; <заполнение массива произвольно от -50 до 50>write(‘ ‘,c[i]); <вывод массива на экран>end; for i: =2 to n doif c[i]

Сегодня мы поговорим с вами про то, откуда берутся кракозябры на сайте и в программах, какие кодировки текста существуют и какие из них следует использовать. Подробно рассмотрим историю их развития, начиная от базовой ASCII, а также ее расширенных версий CP866, KOI8-R, Windows 1251 и заканчивая современными кодировками консорциума Юникод UTF 16 и 8. Оглавление:

  • Расширенные версии Аски – кодировки CP866 и KOI8-R
  • Windows 1251 – вариация ASCII и почему вылезают кракозябры

Кому-то эти сведения могут показаться излишними, но знали бы вы, сколько мне приходит вопросов именно касаемо вылезших кракозябров (не читаемого набора символов). Теперь у меня будет возможность отсылать всех к тексту этой статьи и самостоятельно отыскивать свои косяки. Ну что же, приготовьтесь впитывать информацию и постарайтесь следить за ходом повествования.

ASCII – базовая кодировка текста для латиницы

Расширенные версии Аски – кодировки CP866 и KOI8-R с псевдографикой

Windows 1251 – современная версия ASCII и почему вылезают кракозябры

Юникод (Unicode) – универсальные кодировки UTF 8, 16 и 32

Кракозябры вместо русских букв – как исправить

Юникод – это очень большой и сложный мир, ведь стандарт позволяет ни много ни мало представлять и работать в компьютере со всеми основными письменностями мира. Некоторые системы письма существуют уже более тысячи лет, причём многие из них развивались почти независимо друг от друга в разных уголках мира. Люди так много всего придумали и оно зачастую настолько непохоже друг на друга, что объединить всё это в единый стандарт было крайне непростой и амбициозной задачей.

Чтобы по-настоящему разобраться с Юникодом нужно хотя бы поверхностно представлять себе особенности всех письменностей, с которыми позволяет работать стандарт. Но так ли это нужно каждому разработчику? Мы скажем, что нет. Для использования Юникода в большинстве повседневных задач, достаточно владеть разумным минимумом сведений, а дальше углубляться в стандарт по мере необходимости.

В статье мы расскажем об основных принципах Юникода и осветим те важные практические вопросы, с которыми разработчики непременно столкнутся в своей повседневной работе.

Зачем понадобился Юникод?

До появления Юникода, почти повсеместно использовались однобайтные кодировки, в которых граница между самими символами, их представлением в памяти компьютера и отображением на экране была довольно условной. Если вы работали с тем или иным национальным языком, то в вашей системе были установлены соответствующие шрифты-кодировки, которые позволяли отрисовывать байты с диска на экране таким образом, чтобы они представляли смысл для пользователя.

Если вы распечатывали на принтере текстовый файл и на бумажной странице видели набор непонятных кракозябр, это означало, что в печатающее устройство не загружены соответствующие шрифты и оно интерпретирует байты не так, как вам бы этого хотелось.

У такого подхода в целом и однобайтовых кодировок в частности был ряд существенных недостатков:

  1. Можно было одновременно работать лишь с 256 символами, причём первые 128 были зарезервированы под латинские и управляющие символы, а во второй половине кроме символов национального алфавита нужно было найти место для символов псевдографики (╔ ╗).
  2. Шрифты были привязаны к конкретной кодировке.
  3. Каждая кодировка представляла свой набор символов и конвертация из одной в другую была возможна только с частичными потерями, когда отсутствующие символы заменялись на графически похожие.
  4. Перенос файлов между устройствами под управлением разных операционных систем был затруднителен. Нужно было либо иметь программу-конвертер, либо таскать вместе с файлом дополнительные шрифты. Существование Интернета каким мы его знаем было невозможным.
  5. В мире существуют неалфавитные системы письма (иероглифическая письменность), которые в однобайтной кодировке непредставимы в принципе.

Основные принципы Юникода

Все мы прекрасно понимаем, что компьютер ни о каких идеальных сущностях знать не знает, а оперирует битами и байтами. Но компьютерные системы пока создают люди, а не машины, и для нас с вами иногда бывает удобнее оперировать умозрительными концепциями, а затем уже переходить от абстрактного к конкретному.

Важно! Одном из центральных принципов в философии Юникода является чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.

Вводится понятие абстрактного юникод-символа, существующего исключительно в виде умозрительной концепции и договорённости между людьми, закреплённой стандартом. Каждому юникод-символу поставлено в соответствие неотрицательное целое число, именуемое его кодовой позицией (code point).

Так, например, юникод-символ U+041F – это заглавная кириллическая буква П. Существует несколько возможностей представления данного символа в памяти компьютера, ровно как и несколько тысяч способов отображения его на экране монитора. Но при этом П, оно и в Африке будет П или U+041F.

Это хорошо нам знакомая инкапсуляция или отделение интерфейса от реализации – концепция, отлично зарекомендовавшая себя в программировании.

Получается, что руководствуясь стандартом, любой текст можно закодировать в виде последовательности юникод-символов

Привет U+041F U+0440 U+0438 U+0432 U+0435 U+0442

записать на листочке, упаковать в конверт и переслать в любой конец Земли. Если там знают о существовании Юникода, то текст будет воспринят ими ровно так же, как и нами с вами. У них не будет ни малейших сомнений, что предпоследний символ – это именно кириллическая строчная е (U+0435), а не скажем латинская маленькая e (U+0065). Обратите внимание, что мы ни слова не сказали о байтовом представлении.

Кодовое пространство Юникода

Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF. Из них к девятой версии стандарта значения присвоены лишь 128 237. Часть пространства зарезервирована для частного использования и консорциум Юникода обещает никогда не присваивать значения позициям из этих специальный областей.

Ради удобства всё пространство поделено на 17 плоскостей (сейчас задействовано шесть их них). До недавнего времени было принято говорить, что скорее всего вам придётся столкнуться только с базовой многоязыковой плоскостью (Basic Multilingual Plane, BMP), включающей в себя юникод-символы от U+0000 до U+FFFF. (Забегая немного вперёд: символы из BMP представляются в UTF-16 двумя байтами, а не четырьмя). В 2016 году этот тезис уже вызывает сомнения. Так, например, популярные символы Эмодзи вполне могут встретиться в пользовательском сообщении и нужно уметь их корректно обрабатывать.

Читайте также:  В данном фрагменте программы program error

Если мы хотим переслать текст через Интернет, то нам потребуется закодировать последовательность юникод-символов в виде последовательности байтов.

Стандарт Юникода включает в себя описание ряда юникод-кодировок, например UTF-8 и UTF-16BE/UTF-16LE, которые позволяют кодировать всё пространство кодовых позиций. Конвертация между этими кодировками может свободно осуществляться без потерь информации.

Также никто не отменял однобайтные кодировки, но они позволяют закодировать свой индивидуальный и очень узкий кусочек юникод-спектра – 256 или менее кодовых позиций. Для таких кодировок существуют и доступны всем желающим таблицы, где каждому значению единственного байта сопоставлен юникод-символ (см. например CP1251.TXT). Несмотря на ограничения, однобайтные кодировки оказываются весьма практичными, если речь идёт о работе с большим массивом моноязыковой текстовой информации.

Из юникод-кодировок самой распространённой в Интернете является UTF-8 (она завоевала пальму первенства в 2008 году), главным образом благодаря её экономичности и прозрачной совместимости с семибитной ASCII. Латинские и служебные символы, основные знаки препинания и цифры – т.е. все символы семибитной ASCII – кодируются в UTF-8 одним байтом, тем же, что и в ASCII. Символы многих основных письменностей, не считая некоторых более редких иероглифических знаков, представлены в ней двумя или тремя байтами. Самая большая из определённых стандартом кодовых позиций – 10FFFF – кодируется четырьмя байтами.

Обратите внимание, что UTF-8 – это кодировка с переменной длиной кода. Каждый юникод-символ в ней представляется последовательностью кодовых квантов с минимальной длиной в один квант. Число 8 означает битовую длину кодового кванта (code unit) – 8 бит. Для семейства кодировок UTF-16 размер кодового кванта составляет, соответственно, 16 бит. Для UTF-32 – 32 бита.

Если вы пересылаете по сети HTML-страницу с кириллическим текстом, то UTF-8 может дать весьма ощутимый выигрыш, т.к. вся разметка, а также JavaScript и CSS блоки будут эффективно кодироваться одним байтом. К примеру главная страница Хабра в UTF-8 занимает 139Кб, а в UTF-16 уже 256Кб. Для сравнения, если использовать win-1251 с потерей возможности сохранять некоторые символы, то размер сократится всего на 11Кб.

Для хранения строковой информации в приложениях часто используются 16-битные юникод-кодировки в силу их простоты, а так же того факта, что символы основных мировых систем письма кодируются одним шестнадцатибитовым квантом. Так, например, Java для внутреннего представления строк успешно применяет UTF-16. Операционная система Windows внутри себя также использует UTF-16.

В любом случае, пока мы остаёмся в пространстве Юникода, не так уж и важно, как хранится строковая информация в рамках отдельного приложения. Если внутренний формат хранения позволяет корректно кодировать все миллион с лишним кодовых позиций и на границе приложения, например при чтении из файла или копировании в буфер обмена, не происходит потерь информации, то всё хорошо.

Для корректной интерпретации текста, прочитанного с диска или из сетевого сокета, необходимо сначала определить его кодировку. Это делается либо с использованием метаинформации, предоставленной пользователем, записанной в тексте или рядом с ним, либо определяется эвристически.

В сухом остатке

Информации много и имеет смысл привести краткую выжимку всего, что было написано выше:

  • Юникод постулирует чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.
  • Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF.
  • Базовая многоязыковая плоскость включает в себя юникод-символы от U+0000 до U+FFFF, которые кодируются в UTF-16 двумя байтами.
  • Любая юникод-кодировка позволяет закодировать всё пространство кодовых позиций Юникода и конвертация между различными такими кодировками осуществляется без потерь информации.
  • Однобайтные кодировки позволяют закодировать лишь небольшую часть юникод-спектра, но могут оказаться полезными при работе с большим объёмом моноязыковой информации.
  • Кодировки UTF-8 и UTF-16 обладают переменной длиной кода. В UTF-8 каждый юникод-символ может быть закодирован одним, двумя, тремя или четырьмя байтами. В UTF-16 – двумя или четырьмя байтами.
  • Внутренний формат хранения текстовой информации в рамках отдельного приложения может быть произвольным при условии корректной работы со всем пространством кодовых позиций Юникода и отсутствии потерь при трансграничной передаче данных.

Краткое замечание про кодирование

С термином кодирование может произойти некоторая путаница. В рамках Юникода кодирование происходит дважды. Первый раз кодируется набор символов Юникода (character set), в том смысле, что каждому юникод-символу ставится с соответствие кодовая позиция. В рамках этого процесса набор символов Юникода превращается в кодированный набор символов (coded character set). Второй раз последовательность юникод-символов преобразуется в строку байтов и этот процесс также называется кодирование.

В англоязычной терминологии существуют два разных глагола to code и to encode, но даже носители языка зачастую в них путаются. К тому же термин набор символов (character set или charset) используется в качестве синонима к термину кодированный набор символов (coded character set).

Всё это мы говорим к тому, что имеет смысл обращать внимание на контекст и различать ситуации, когда речь идёт о кодовой позиции абстрактного юникод-символа и когда речь идёт о его байтовом представлении.

В Юникоде так много различных аспектов, что осветить всё в рамках одной статьи невозможно. Да и ненужно. Приведённой выше информации вполне достаточно, чтобы не путаться в основных принципах и работать с текстом в большинстве повседневных задач (читай: не выходя за рамки BMP). В следующих статьях мы расскажем о нормализации, дадим более полный исторический обзор развития кодировок, побеседуем о проблемах русскоязычной юникод-терминологии, а также сделаем материал о практических аспектах использования UTF-8 и UTF-16.

Материал из Википедии – свободной энциклопедии

Перейти к: навигация , поиск

Юнико́д (чаще всего) или Унико́д (англ. Unicode ) – стандарт кодирования символов , позволяющий представить знаки практически всех письменных языков .

Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium , Unicode Inc . ). Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы , математические символы, буквы греческого алфавита , латиницы и кириллицы , при этом становится ненужным переключение кодовых страниц .

Читайте также:  Как отключить гороскоп на мегафоне

Стандарт состоит из двух основных разделов: универсальный набор символов (англ. UCS, universal character set ) и семейство кодировок (англ . UTF, Unicode transformation format ). Универсальный набор символов задаёт однозначное соответствие символов кодам – элементам кодового пространства, представляющим неотрицательные целые числа. Семейство кодировок определяет машинное представление последовательности кодов UCS.

Коды в стандарте Юникод разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII с соответствующими кодами. Далее расположены области знаков различных письменностей, знаки пунктуации и технические символы. Часть кодов зарезервирована для использования в будущем. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F (см. Кириллица в Юникоде ).

1 Предпосылки создания и развитие Юникода

Юникод — это очень большой и сложный мир, ведь стандарт позволяет ни много ни мало представлять и работать в компьютере со всеми основными письменностями мира. Некоторые системы письма существуют уже более тысячи лет, причём многие из них развивались почти независимо друг от друга в разных уголках мира. Люди так много всего придумали и оно зачастую настолько непохоже друг на друга, что объединить всё это в единый стандарт было крайне непростой и амбициозной задачей.

Чтобы по-настоящему разобраться с Юникодом нужно хотя бы поверхностно представлять себе особенности всех письменностей, с которыми позволяет работать стандарт. Но так ли это нужно каждому разработчику? Мы скажем, что нет. Для использования Юникода в большинстве повседневных задач, достаточно владеть разумным минимумом сведений, а дальше углубляться в стандарт по мере необходимости.

В статье мы расскажем об основных принципах Юникода и осветим те важные практические вопросы, с которыми разработчики непременно столкнутся в своей повседневной работе.

Зачем понадобился Юникод?

До появления Юникода, почти повсеместно использовались однобайтные кодировки, в которых граница между самими символами, их представлением в памяти компьютера и отображением на экране была довольно условной. Если вы работали с тем или иным национальным языком, то в вашей системе были установлены соответствующие шрифты-кодировки, которые позволяли отрисовывать байты с диска на экране таким образом, чтобы они представляли смысл для пользователя.

Если вы распечатывали на принтере текстовый файл и на бумажной странице видели набор непонятных кракозябр, это означало, что в печатающее устройство не загружены соответствующие шрифты и оно интерпретирует байты не так, как вам бы этого хотелось.

У такого подхода в целом и однобайтовых кодировок в частности был ряд существенных недостатков:

  1. Можно было одновременно работать лишь с 256 символами, причём первые 128 были зарезервированы под латинские и управляющие символы, а во второй половине кроме символов национального алфавита нужно было найти место для символов псевдографики (╔ ╗).
  2. Шрифты были привязаны к конкретной кодировке.
  3. Каждая кодировка представляла свой набор символов и конвертация из одной в другую была возможна только с частичными потерями, когда отсутствующие символы заменялись на графически похожие.
  4. Перенос файлов между устройствами под управлением разных операционных систем был затруднителен. Нужно было либо иметь программу-конвертер, либо таскать вместе с файлом дополнительные шрифты. Существование Интернета каким мы его знаем было невозможным.
  5. В мире существуют неалфавитные системы письма (иероглифическая письменность), которые в однобайтной кодировке непредставимы в принципе.

Основные принципы Юникода

Все мы прекрасно понимаем, что компьютер ни о каких идеальных сущностях знать не знает, а оперирует битами и байтами. Но компьютерные системы пока создают люди, а не машины, и для нас с вами иногда бывает удобнее оперировать умозрительными концепциями, а затем уже переходить от абстрактного к конкретному.

Важно! Одним из центральных принципов в философии Юникода является чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.

Вводится понятие абстрактного юникод-символа, существующего исключительно в виде умозрительной концепции и договорённости между людьми, закреплённой стандартом. Каждому юникод-символу поставлено в соответствие неотрицательное целое число, именуемое его кодовой позицией (code point).

Так, например, юникод-символ U+041F — это заглавная кириллическая буква П. Существует несколько возможностей представления данного символа в памяти компьютера, ровно как и несколько тысяч способов отображения его на экране монитора. Но при этом П, оно и в Африке будет П или U+041F.

Это хорошо нам знакомая инкапсуляция или отделение интерфейса от реализации — концепция, отлично зарекомендовавшая себя в программировании.

Получается, что руководствуясь стандартом, любой текст можно закодировать в виде последовательности юникод-символов

записать на листочке, упаковать в конверт и переслать в любой конец Земли. Если там знают о существовании Юникода, то текст будет воспринят ими ровно так же, как и нами с вами. У них не будет ни малейших сомнений, что предпоследний символ — это именно кириллическая строчная е (U+0435), а не скажем латинская маленькая e (U+0065). Обратите внимание, что мы ни слова не сказали о байтовом представлении.

Хотя юникод-символы и называются символами, они далеко не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу. (Подробнее смотри под спойлером.)

Существуют чисто технические юникод-символы, например:

  • U+0000: нулевой символ;
  • U+D800–U+DFFF: младшие и старшие суррогаты для технического представления кодовых позиций в диапазоне от 10000 до 10FFFF (читай: за пределами БМЯП/BMP) в семействе кодировок UTF-16;
  • и т.д.

Существуют пунктуационные маркеры, например U+200F: маркер смены направления письма справа-налево.

Существует целая когорта пробелов различной ширины и назначения (см. отличную хабра-статью: всё (или почти всё) о пробеле):

  • U+0020 (пробел);
  • U+00A0 (неразрывный пробел, в HTML);
  • U+2002 (полукруглая шпация или En Space);
  • U+2003 (круглая шпация или Em Space);
  • и т.д.

Существуют комбинируемые диакритические знаки (сombining diacritical marks) — всевозможные штрихи, точки, тильды и т.д., которые меняют/уточняют значение предыдущего знака и его начертание. Например:

  • U+0300 и U+0301: знаки основного (острого) и второстепенного (слабого) ударений;
  • U+0306: кратка (надстрочная дуга), как в й;
  • U+0303: надстрочная тильда;
  • и т.д.

Существует даже такая экзотика, как языковые тэги (U+E0001, U+E0020–U+E007E, и U+E007F), которые сейчас находятся в подвешенном состоянии. Они задумывались как возможность маркировать определённые участки текста как относящиеся к тому или иному варианту языку (скажем американский и британский вариант английского), что могло влиять на детали отображения текста.

Читайте также:  Схема строения основных типов нейронных сетей

Что такое символ, чем отличается графемный кластер (читай: воспринимаемое как единое целое изображение символа) от юникод-символа и от кодового кванта мы расскажем в следующий раз.

Кодовое пространство Юникода

Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF. Из них к девятой версии стандарта значения присвоены лишь 128 237. Часть пространства зарезервирована для частного использования и консорциум Юникода обещает никогда не присваивать значения позициям из этих специальный областей.

Ради удобства всё пространство поделено на 17 плоскостей (сейчас задействовано шесть их них). До недавнего времени было принято говорить, что скорее всего вам придётся столкнуться только с базовой многоязыковой плоскостью (Basic Multilingual Plane, BMP), включающей в себя юникод-символы от U+0000 до U+FFFF. (Забегая немного вперёд: символы из BMP представляются в UTF-16 двумя байтами, а не четырьмя). В 2016 году этот тезис уже вызывает сомнения. Так, например, популярные символы Эмодзи вполне могут встретиться в пользовательском сообщении и нужно уметь их корректно обрабатывать.

Кодировки

Если мы хотим переслать текст через Интернет, то нам потребуется закодировать последовательность юникод-символов в виде последовательности байтов.

Стандарт Юникода включает в себя описание ряда юникод-кодировок, например UTF-8 и UTF-16BE/UTF-16LE, которые позволяют кодировать всё пространство кодовых позиций. Конвертация между этими кодировками может свободно осуществляться без потерь информации.

Также никто не отменял однобайтные кодировки, но они позволяют закодировать свой индивидуальный и очень узкий кусочек юникод-спектра — 256 или менее кодовых позиций. Для таких кодировок существуют и доступны всем желающим таблицы, где каждому значению единственного байта сопоставлен юникод-символ (см. например CP1251.TXT). Несмотря на ограничения, однобайтные кодировки оказываются весьма практичными, если речь идёт о работе с большим массивом моноязыковой текстовой информации.

Из юникод-кодировок самой распространённой в Интернете является UTF-8 (она завоевала пальму первенства в 2008 году), главным образом благодаря её экономичности и прозрачной совместимости с семибитной ASCII. Латинские и служебные символы, основные знаки препинания и цифры — т.е. все символы семибитной ASCII — кодируются в UTF-8 одним байтом, тем же, что и в ASCII. Символы многих основных письменностей, не считая некоторых более редких иероглифических знаков, представлены в ней двумя или тремя байтами. Самая большая из определённых стандартом кодовых позиций — 10FFFF — кодируется четырьмя байтами.

Обратите внимание, что UTF-8 — это кодировка с переменной длиной кода. Каждый юникод-символ в ней представляется последовательностью кодовых квантов с минимальной длиной в один квант. Число 8 означает битовую длину кодового кванта (code unit) — 8 бит. Для семейства кодировок UTF-16 размер кодового кванта составляет, соответственно, 16 бит. Для UTF-32 — 32 бита.

Если вы пересылаете по сети HTML-страницу с кириллическим текстом, то UTF-8 может дать весьма ощутимый выигрыш, т.к. вся разметка, а также JavaScript и CSS блоки будут эффективно кодироваться одним байтом. К примеру главная страница Хабра в UTF-8 занимает 139Кб, а в UTF-16 уже 256Кб. Для сравнения, если использовать win-1251 с потерей возможности сохранять некоторые символы, то размер, по сравнению с UTF-8, сократится всего на 11Кб до 128Кб.

Для хранения строковой информации в приложениях часто используются 16-битные юникод-кодировки в силу их простоты, а так же того факта, что символы основных мировых систем письма кодируются одним шестнадцатибитовым квантом. Так, например, Java для внутреннего представления строк успешно применяет UTF-16. Операционная система Windows внутри себя также использует UTF-16.

В любом случае, пока мы остаёмся в пространстве Юникода, не так уж и важно, как хранится строковая информация в рамках отдельного приложения. Если внутренний формат хранения позволяет корректно кодировать все миллион с лишним кодовых позиций и на границе приложения, например при чтении из файла или копировании в буфер обмена, не происходит потерь информации, то всё хорошо.

Для корректной интерпретации текста, прочитанного с диска или из сетевого сокета, необходимо сначала определить его кодировку. Это делается либо с использованием метаинформации, предоставленной пользователем, записанной в тексте или рядом с ним, либо определяется эвристически.

В сухом остатке

Информации много и имеет смысл привести краткую выжимку всего, что было написано выше:

  • Юникод постулирует чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.
  • Юникод-символы не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу.
  • Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF.
  • Базовая многоязыковая плоскость включает в себя юникод-символы от U+0000 до U+FFFF, которые кодируются в UTF-16 двумя байтами.
  • Любая юникод-кодировка позволяет закодировать всё пространство кодовых позиций Юникода и конвертация между различными такими кодировками осуществляется без потерь информации.
  • Однобайтные кодировки позволяют закодировать лишь небольшую часть юникод-спектра, но могут оказаться полезными при работе с большим объёмом моноязыковой информации.
  • Кодировки UTF-8 и UTF-16 обладают переменной длиной кода. В UTF-8 каждый юникод-символ может быть закодирован одним, двумя, тремя или четырьмя байтами. В UTF-16 — двумя или четырьмя байтами.
  • Внутренний формат хранения текстовой информации в рамках отдельного приложения может быть произвольным при условии корректной работы со всем пространством кодовых позиций Юникода и отсутствии потерь при трансграничной передаче данных.

Краткое замечание про кодирование

С термином кодирование может произойти некоторая путаница. В рамках Юникода кодирование происходит дважды. Первый раз кодируется набор символов Юникода (character set), в том смысле, что каждому юникод-символу ставится с соответствие кодовая позиция. В рамках этого процесса набор символов Юникода превращается в кодированный набор символов (coded character set). Второй раз последовательность юникод-символов преобразуется в строку байтов и этот процесс также называется кодирование.

В англоязычной терминологии существуют два разных глагола to code и to encode, но даже носители языка зачастую в них путаются. К тому же термин набор символов (character set или charset) используется в качестве синонима к термину кодированный набор символов (coded character set).

Всё это мы говорим к тому, что имеет смысл обращать внимание на контекст и различать ситуации, когда речь идёт о кодовой позиции абстрактного юникод-символа и когда речь идёт о его байтовом представлении.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector