No Image

Формула окружности с центром в начале координат

СОДЕРЖАНИЕ
5 просмотров
11 марта 2020

Чем окружность с центром в начале координат отличается от других окружностей?

Окружность с центром в точке (a;b) и радиусом R задаётся уравнением

Для окружности с центром в начале координат a=0, b=0:

Таким образом, уравнение окружности с центром в начале координат имеет вид

1) Написать уравнение окружности с центром в начале координат и радиусом 5.

В формулу уравнения окружности с центром в начале координат подставляем R=5:

2) Составить уравнение окружности с центром в начале координат, проходящей через точку M(-2;7).

Теперь запишем уравнение окружности с центром в точке O(0;0) и R=√53:

Числовая ось
Прямоугольная декартова система координат на плоскости
Формула для расстояния между двумя точками координатной плоскости
Уравнение окружности на координатной плоскости

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Читайте также:  Geforce 8800 gts palit

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Доказательство . Рассмотрим рисунок 6.

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

что и требовалось доказать.

Уравнение окружности на координатной плоскости

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Читайте также:  Виндовс 10 ошибка bad system config

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A (x ; y) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

  • 5 – 9 классы
  • Геометрия
  • 5 баллов

Запишите уравнение окружности с центром в начале координат, проходящей через точку М(1;-5)

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

НастенкОО 22.04.2012

Что ты хочешь узнать?

Ответ

Проверено экспертом

Уравнение окружности с центром в начале координат: x^2 + y^2 = R^2

радиус R= sqrt(1^2 +5^2)=sqrt(26)

x^2 + y^2 = 26 -искомое уравнение

  • Комментарии
  • Отметить нарушение

Ответ

Проверено экспертом

Уравнение окружности с центром в начале координат

если окружность проходит через точку М(1;-5),

подставим в уравнение и найдём квадрат радиуса

“>

Комментировать
5 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector