No Image

Хеш код что это

СОДЕРЖАНИЕ
1 просмотров
11 марта 2020

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Хочу продолжить серию статей посвященных различным терминам, которые не всегда могут быть понятны без дополнительных пояснений. Чуть ранее я рассказывал про то, что значит слово кликбейт и что такое хост, писал про IP и MAC адреса, фишинг и многое другое.

Сегодня у нас на очереди хеш. Что это такое? Зачем он нужен? Почему это слово так часто используется в интернете применительно к совершенно разным вещам? Имеет ли это какое-то отношение к хештегам или хешссылкам? Где применяют хэш, как вы сами можете его использовать? Что такое хэш-функция и хеш-сумма? Причем тут коллизии?

Все это (или почти все) вы узнаете из этой маленькой заметки. Поехали.

Что такое хеш и хэширование простыми словами

Слово хеш происходит от английского «hash», одно из значений которого трактуется как путаница или мешанина. Собственно, это довольно полно описывает реальное значение этого термина. Часто еще про такой процесс говорят «хеширование», что опять же является производным от английского hashing (рубить, крошить, спутывать и т.п.).

Появился этот термин в середине прошлого века среди людей занимающихся обработках массивов данных. Хеш-функция позволяла привести любой массив данных к числу заданной длины. Например, если любое число (любой длинны) начать делить много раз подряд на одно и то же простое число, то полученный в результате остаток от деления можно будет называть хешем. Для разных исходных чисел остаток от деления (цифры после запятой) будет отличаться.

Для обычного человека это кажется белибердой, но как ни странно в наше время без хеширования практически невозможна работа в интернете. Так что же это такая за функция? На самом деле она может быть любой (приведенный выше пример это не есть реальная функция — он придуман мною чисто для вашего лучшего понимания принципа). Главное, чтобы результаты ее работы удовлетворяли приведенным ниже условиям.

Зачем нужен хэш

Смотрите, еще пример. Есть у вас текст в файле. Но на самом деле это ведь не текст, а массив цифровых символов (по сути число). Как вы знаете, в компьютерной логике используются двоичные числа (ноль и единица). Они запросто могут быть преобразованы в шестнадцатиричные цифры, над которыми можно проводить математические операции. Применив к ним хеш-функцию мы получим на выходе (после ряда итераций) число заданной длины (хеш-сумму).

Если мы потом в исходном текстовом файле поменяем хотя бы одну букву или добавим лишний пробел, то повторно рассчитанный для него хэш уже будет отличаться от изначального (вообще другое число будет). Доходит, зачем все это нужно? Ну, конечно же, для того, чтобы понять, что файл именно тот, что и должен быть. Это можно использовать в целом ряде аспектов работы в интернете и без этого вообще сложно представить себе работу сети.

Где и как используют хеширование

Например, простые хэш-функции (не надежные, но быстро рассчитываемые) применяются при проверке целостности передачи пакетов по протоколу TCP/IP (и ряду других протоколов и алгоритмов, для выявления аппаратных ошибок и сбоев — так называемое избыточное кодирование). Если рассчитанное значение хеша совпадает с отправленным вместе с пакетом (так называемой контрольной суммой), то значит потерь по пути не было (можно переходить к следующему пакету).

А это, ведь на минутку, основной протокол передачи данных в сети интернет. Без него никуда. Да, есть вероятность, что произойдет накладка — их называют коллизиями. Ведь для разных изначальных данных может получиться один и тот же хеш. Чем проще используется функция, тем выше такая вероятность. Но тут нужно просто выбирать между тем, что важнее в данный момент — надежность идентификации или скорость работы. В случае TCP/IP важна именно скорость. Но есть и другие области, где важнее именно надежность.

Похожая схема используется и в технологии блокчейн, где хеш выступает гарантией целостности цепочки транзакций (платежей) и защищает ее от несанкционированных изменений. Благодаря ему и распределенным вычислениям взломать блокчен очень сложно и на его основе благополучно существует множество криптовалют, включая самую популярную из них — это биткоин. Последний существует уже с 2009 год и до сих пор не был взломан.

Более сложные хеш-функции используются в криптографии. Главное условие для них — невозможность по конечному результату (хэшу) вычислить начальный (массив данных, который обработали данной хеш-функцией). Второе главное условие — стойкость к коллизиями, т.е. низкая вероятность получения двух одинаковых хеш-сумм из двух разных массивов данных при обработке их этой функцией. Расчеты по таким алгоритмам более сложные, но тут уже главное не скорость, а надежность.

Так же хеширование используется в технологии электронной цифровой подписи. С помощью хэша тут опять же удостоверяются, что подписывают именно тот документ, что требуется. Именно он (хеш) передается в токен, который и формирует электронную цифровую подпись. Но об этом, я надеюсь, еще будет отдельная статья, ибо тема интересная, но в двух абзацах ее не раскроешь.

Для доступа к сайтам и серверам по логину и паролю тоже часто используют хеширование. Согласитесь, что хранить пароли в открытом виде (для их сверки с вводимыми пользователями) довольно ненадежно (могут их похитить). Поэтому хранят хеши всех паролей. Пользователь вводит символы своего пароля, мгновенно рассчитывается его хеш-сумма и сверяется с тем, что есть в базе. Надежно и очень просто. Обычно для такого типа хеширования используют сложные функции с очень высокой криптостойкостью, чтобы по хэшу нельзя было бы восстановить пароль.

Читайте также:  Маршрутизатор для малого офиса

Какими свойствами должна обладать хеш-функция

Хочу систематизировать кое-что из уже сказанного и добавить новое.

  1. Как уже было сказано, функция эта должна уметь приводить любой объем данных (а все они цифровые, т.е. двоичные, как вы понимаете) к числу заданной длины (по сути это сжатие до битовой последовательности заданной длины хитрым способом).
  2. При этом малейшее изменение (хоть на один бит) входных данных должно приводить к полному изменению хеша.
  3. Она должна быть стойкой в обратной операции, т.е. вероятность восстановления исходных данных по хешу должна быть весьма низкой (хотя последнее сильно зависит от задействованных мощностей)
  4. В идеале она должна иметь как можно более низкую вероятность возникновения коллизий. Согласитесь, что не айс будет, если из разных массивов данных будут часто получаться одни и те же значения хэша.
  5. Хорошая хеш-функция не должна сильно нагружать железо при своем исполнении. От этого сильно зависит скорость работы системы на ней построенной. Как я уже говорил выше, всегда имеется компромисс между скорость работы и качеством получаемого результата.
  6. Алгоритм работы функции должен быть открытым, чтобы любой желающий мог бы оценить ее криптостойкость, т.е. вероятность восстановления начальных данных по выдаваемому хешу.

Хеш — это маркер целостности скачанных в сети файлов

Где еще можно встретить применение этой технологии? Наверняка при скачивании файлов из интернета вы сталкивались с тем, что там приводят некоторые числа (которые называют либо хешем, либо контрольными суммами) типа:

Что это такое? И что вам с этим всем делать? Ну, как правило, на тех же сайтах можно найти пояснения по этому поводу, но я не буду вас утруждать и расскажу в двух словах. Это как раз и есть результаты работы различных хеш-функций (их названия приведены перед числами: CRC32, MD5 и SHA-1).

Зачем они вам нужны? Ну, если вам важно знать, что при скачивании все прошло нормально и ваша копия полностью соответствует оригиналу, то нужно будет поставить на свой компьютер программку, которая умеет вычислять хэш по этим алгоритмам (или хотя бы по некоторым их них).

После чего прогнать скачанные файлы через эту программку и сравнить полученные числа с приведенными на сайте. Если совпадают, то сбоев при скачивании не было, а если нет, то значит были сбои и есть смысл повторить закачку заново.

Популярные хэш-алгоритмы сжатия

  1. CRC32 — используется именно для создания контрольных сумм (так называемое избыточное кодирование). Данная функция не является криптографической. Есть много вариаций этого алгоритма (число после CRC означает длину получаемого хеша в битах), в зависимости от нужной длины получаемого хеша. Функция очень простая и нересурсоемкая. В связи с этим используется для проверки целостности пакетов в различных протоколах передачи данных.
  2. MD5 — старая, но до сих пор очень популярная версия уже криптографического алгоритма, которая создает хеш длиной в 128 бит. Хотя стойкость этой версии на сегодняшний день и не очень высока, она все равно часто используется как еще один вариант контрольной суммы, например, при скачивании файлов из сети.
  3. SHA-1 — криптографическая функция формирующая хеш-суммы длиной в 160 байт. Сейчас идет активная миграция в сторону SHA-2, которая обладает более высокой устойчивостью, но SHA-1 по-прежнему активно используется хотя бы в качестве контрольных сумм. Но она так же по-прежнему используется и для хранения хешей паролей в базе данных сайта (об этом читайте выше).
  4. ГОСТ Р 34.11-2012 — текущий российский криптографический (стойкий к взлому) алгоритм введенный в работу в 2013 году (ранее использовался ГОСТ Р 34.11-94). Длина выходного хеша может быть 256 или 512 бит. Обладает высокой криптостойкостью и довольно хорошей скоростью работы. Используется для электронных цифровых подписей в системе государственного и другого документооборота.

HashTab — вычисление хеша для любых файлов на компьютере

Раз уж зашла речь о программе для проверки целостности файлов (расчета контрольных сумм по разным алгоритмам хеширования), то тут, наверное, самым популярным решением будет HashTab.

Она бесплатна для личного некоммерческого использования и покрывает с лихвой все, что вам может понадобиться от подобного рода софта. После ее скачивания и установки запускать ничего не надо. Просто кликаете правой кнопкой мыши по нужному файлу в Проводнике (или ТоталКомандере) и выбираете самый нижний пункт выпадающего меню «Свойства»:

В открывшемся окне перейдите на вкладку «Хеш-суммы файлов», где будут отображены контрольные суммы, рассчитанные по нужным вам алгоритмам хэширования (задать их можно нажав на кнопку «Настройки» в этом же окне). По умолчанию отображаются три самых популярных:

Читайте также:  Алиса не открывай яндекс

Чтобы не сравнивать контрольные суммы визуально, можно числа по очереди вставить в рассположенное ниже поле (со знаком решетки) и нажать на кнопку «Сравнить файл».

Как видите, все очень просто и быстро. А главное эффективно.

Несложные, крайне быстрые и легко реализуемые аппаратно алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.

Платой за столь высокую скорость является отсутствие криптостойкости — легкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.

Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP.

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклический избыточных кодов» удовлетворяет этим требованиям. К ним относится, например, CRC32, применяемый в аппаратуре ZIP.

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии. Криптостойкая хеш-функция прежде всего должна обладать стойкостью к коллизиям двух типов:

  • Стойкость к коллизиям первого рода: для заданного сообщения должно быть практически невозможно подобрать другое сообщение , имеющее такой же хеш. Это свойство также называется необратимостью хеш-функции.
  • Стойкость к коллизиям второго рода: должно быть практически невозможно подобрать пару сообщений , имеющих одинаковый хеш.

Согласно парадоксу о днях рождения, нахождение коллизии для хеш-функции с длиной значений n бит требует в среднем перебора около 2 n / 2 операций. Поэтому n-битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для нее близка к 2 n / 2 .

Простейшим (хотя и не всегда приемлемым) способом усложнения поиска коллизий является увеличение разрядности хеша, например, путем параллельного использования двух или более различных хеш-функций.

Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов шифрования, хеширующих пользовательский пароль для получения ключа.

Применение хеширования

Хеш-функции также используются в некоторых структурах данных — хеш-таблицаx и декартовых деревьях. Требования к хеш-функции в этом случае другие:

  • хорошая перемешиваемость данных
  • быстрый алгоритм вычисления

Сверка данных

В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:

Проверка на наличие ошибок

Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом.

Проверка парольной фразы

В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.

Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP. В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.

Ускорение поиска данных

Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Что такое хеш-код?

Если очень просто, то хеш-код — это число. На самом деле просто, не так ли? Если более точно, то это битовая строка фиксированной длины, полученная из массива произвольной длины (википедия).

Пример №1
Выполним следующий код:

В результате выполнения программы в консоль выведется целое 10-ти значное число. Это число и есть наша битовая строка фиксированной длины. В java она представлена в виде числа примитивного типа int , который равен 4-м байтам, и может помещать числа от -2 147 483 648 до 2 147 483 647. На данном этапе важно понимать, что хеш-код это число, у которого есть свой предел, который для java ограничен примитивным целочисленным типом int.

Читайте также:  Цифровая живопись в фотошопе

Вторая часть объяснения гласит:

полученная из массива произвольной длины.

Под массивом произвольной длины мы будем понимать объект. В 1 примере в качестве массива произвольной длины у нас выступает объект типа Object .

В итоге, в терминах Java, хеш-код — это целочисленный результат работы метода, которому в качестве входного параметра передан объект.

Этот метод реализован таким образом, что для одного и того-же входного объекта, хеш-код всегда будет одинаковым. Следует понимать, что множество возможных хеш-кодов ограничено примитивным типом int , а множество объектов ограничено только нашей фантазией. Отсюда следует утверждение: “Множество объектов мощнее множества хеш-кодов”. Из-за этого ограничения, вполне возможна ситуация, что хеш-коды разных объектов могут совпасть.

Здесь главное понять, что:

  • Если хеш-коды разные, то и входные объекты гарантированно разные.
  • Если хеш-коды равны, то входные объекты не всегда равны.

Ситуация, когда у разных объектов одинаковые хеш-коды называется — коллизией. Вероятность возникновения коллизии зависит от используемого алгоритма генерации хеш-кода.

Подведём итог:

Сперва, что-бы избежать путаницы, определимся с терминологией. Одинаковые объекты — это объекты одного класса с одинаковым содержимым полей.

  1. для одного и того-же объекта, хеш-код всегда будет одинаковым;
  2. если объекты одинаковые, то и хеш-коды одинаковые (но не наоборот, см. правило 3).
  3. если хеш-коды равны, то входные объекты не всегда равны (коллизия);
  4. если хеш-коды разные, то и объекты гарантированно разные;

Понятие эквивалентности. Метод equals()

Начнем с того, что в java, каждый вызов оператора new порождает новый объект в памяти. Для иллюстрации создадим какой-нибудь класс, пускай он будет называться “BlackBox”.

Пример №2
Выполним следующий код:

Создадим класс для демонстрации BlackBox .

Во втором примере, в памяти создастся два объекта.

Но, как вы уже обратили внимание, содержимое этих объектов одинаково, то есть эквивалентно. Для проверки эквивалентности в классе Object существует метод equals() , который сравнивает содержимое объектов и выводит значение типа boolean true , если содержимое эквивалентно, и false — если нет.

Эквивалентность и хеш-код тесно связанны между собой, поскольку хеш-код вычисляется на основании содержимого объекта (значения полей) и если у двух объектов одного и того же класса содержимое одинаковое, то и хеш-коды должны быть одинаковые (см. правило 2).

Я написал “должно быть”, потому что если вы выполните предыдущий пример, то на самом деле результатом выполнения всех операций будет false . Для пояснения причин, заглянем в исходные коды класса Object .

Класс Object

Как известно, все java-классы наследуются от класса Object . В этом классе уже определены методы hashCode() и equals() .
Определяя свой класс, вы автоматически наследуете все методы класса Object . И в ситуации, когда в вашем классе не переопределены ( @overriding ) hashCode() и equals() , то используется их реализация из Object .

Рассмотрим исходный код метода equals() в классе Object .

При сравнение объектов, операция “ == ” вернет true лишь в одном случае — когда ссылки указывают на один и тот-же объект. В данном случае не учитывается содержимое полей.

Выполнив приведённый ниже код, equals вернет true .

Теперь понято, почему Object.equals() работает не так как нужно, ведь он сравнивает ссылки, а не содержимое объектов.
Далее на очереди hashCode() , который тоже работает не так как полагается.

Заглянем в исходный код метода hashCode() в классе Object :

Вот собственно и вся реализация. Ключевое слово native означает, что реализация данного метода выполнена на другом языке, например на C, C++ или ассемблере. Конкретный native int hashCode() реализован на C++, вот исходники — http://hg.openjdk.java.net/jdk7/jdk7/hotspot/file/tip/src/share/vm/runtime/synchronizer.cpp функция get_next_hash .

При вычислении хэш-кода для объектов класса Object по умолчанию используется Park-Miller RNG алгоритм. В основу работы данного алгоритма положен генератор случайных чисел. Это означает, что при каждом запуске программы у объекта будет разный хэш-код.

Получается, что используя реализацию метода hashCode() от класса Object , мы при каждом создании объекта класса new BlackBox() , будем получать разные хеш-коды. Мало того, перезапуская программу, мы будем получать абсолютно разные значения, поскольку это просто случайное число.

Но, как мы помним, должно выполняться правило: “если у двух объектов одного и того же класса содержимое одинаковое, то и хеш-коды должны быть одинаковые ”. Поэтому, при создании пользовательского класса, принято переопределять методы hashCode() и equals() таким образом, что бы учитывались поля объекта.
Это можно сделать вручную либо воспользовавшись средствами генерации исходного кода в IDE. Например, в Eclipse это SourceGenerate hashCode() and equals().

В итоге, класс BlackBox приобретает вид:

Теперь методы hashCode() и equals() работают корректно и учитывают содержимое полей объекта:

Кому интересно переопределение в ручную, можно почитать Effective Java — Joshua Bloch, chapter 3, item 8,9.

Комментировать
1 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector