Смотрите видео
Построение различных треугольников – обязательный элемент школьного курса геометрии. У многих это задание вызывает страх. Но на самом деле, все довольно просто. Далее в статье описано, как начертить треугольник любого типа с помощью циркуля и линейки.
- разносторонние;
- равнобедренные;
- равносторонние;
- прямоугольные;
- тупоугольные;
- остроугольные;
- вписанные в окружность;
- описанные вокруг окружности.
Построение равностороннего треугольника
Равносторонним называется треугольник, у которого все стороны равны. Из всех видов треугольников, начертить равносторонний проще всего.
- С помощью линейки начертите одну из сторон, заданной длины.
- Измерьте ее длину с помощью циркуля.
- Поместите острие циркуля в один из концов отрезка и проведите окружность.
- Переставьте острие в другой конец отрезка и проведите окружность.
- У нас получилось 2 точки пересечения окружностей. Соединяя любую из них с краями отрезка, мы получаем равносторонний треугольник.
Построение равнобедренного треугольника
Данный тип треугольников можно построить по основанию и боковым сторонам.
Равнобедренным называется треугольник, у которого две стороны равны. Для того чтобы начертить равнобедренный треугольник по данным параметрам, необходимо выполнить следующие действия:
- С помощью линейки откладываем отрезок, равный по длине основанию. Обозначаем его буквами АС.
- Циркулем измеряем необходимую длину боковой стороны.
- Рисуем из точки А, а затем из точки С, окружности, радиус которых равен длине боковой стороны.
- Получаем две точки пересечения. Соединив одну из них с точками А и С, получаем необходимый треугольник.
Построение прямоугольного треугольника
Треугольник, у которого один угол прямой, называют прямоугольным. Если нам даны катет и гипотенуза, начертить прямоугольный треугольник не составит труда. Его можно построить по катету и гипотенузе.
- С помощью линейки чертим гипотенузу заданной длины. Назовем этот отрезок АВ.
- Ставим острие циркуля в точку А и проводим полуокружность, радиус
которой немного больше, чем половина отрезка.
- Переставляем острие циркуля в точку В и проводим аналогичное действие. Наши дуги пересекаются в двух места. Соединяем эти точки. Точка пересечения данной линии и отрезка АВ – его середина, точка О.
- С помощью циркуля рисуем окружность, центр которой находится в точке О, а радиус равен отрезку АО.
- Из точки А проводим циркулем дугу, радиус которой равен заданному катету. Точка пересечения дуги и окружности – искомая третья вершина треугольника. Соединяем ее с точками А и В. Задача выполнена.
Построение тупоугольного треугольника по углу и двум прилегающим сторонам
Если один из углов треугольника тупой (больше 90 градусов), его называют тупоугольным. Чтобы начертить по указанным параметрам тупоугольный треугольник необходимо сделать следующее:
- С помощью линейки откладываем отрезок, равный по длине одной из сторон треугольника. Обозначим его буквами А и D.
- Если в задании уже нарисован угол, и вам необходимо начертить такой же, то на его изображении отложить два отрезка, оба конца которых лежат в вершине угла, а длина равняется указанным сторонам. Соедините полученные точки. У нас получился искомый треугольник.
- Чтобы его перенести на свой чертеж, вам необходимо измерить длину третьей стороны.
Построение остроугольного треугольника
Остроугольный треугольник (все углы меньше 90 градусов) строится по тому же принципу.
- Нарисуйте две окружности. Центр одной из них лежит в точке D, а радиус равен длине третьей стороны, а у второй центр находится в точке А, а радиус равен длине указанной в задании стороны.
- Соедините одну из точек пересечения окружности с точками А и D. Искомый треугольник построен.
Вписанный треугольник
Для того чтобы начертить треугольник в окружности, нужно помнить теорему, в которой говорится, что центр описанной окружности лежит на пересечении серединных перпендикуляров:
- Циркулем проводим две окружности, центры которых лежат на разных концах отрезка одной из сторон, а радиусы (одинаковые) немного больше
половины его длины. Соединяем точки пересечения окружностей. Это и будет нашим серединным перпендикуляром.
- Строим два серединных перпендикуляра к двум любым сторонам. Точка пересечения (назовем ее О) – центр искомой описанной окружности. Согласно аксиоме, у двух прямых может быть только одна точка пересечения, поэтому нет надобности чертить все три перпендикуляра.
- Измеряем циркулем расстояние от точки О до любой из вершин треугольника и рисуем окружность. Задание выполнено.
У тупоугольного треугольника центр описанной окружности лежит за пределами треугольника, а у прямоугольного – на середине гипотенузы.
Чертим описанный треугольник
Описанный треугольник – это треугольник, в центре которого нарисована окружность, касающаяся всех его сторон. Центр вписанной окружности лежит на пересечении биссектрис. Для их построения необходимо:
- Произвольным радиусом чертим дугу, центр которой одна из вершин треугольника. Точки пересечения дуги со сторонами назовем Р и М.
- Тем же радиусом рисуем еще две дуги, с центрами в точках Р и М. Соединяем точку их пересечения с исходной вершиной. Биссектриса построена.
- Чертим 2 биссектрисы. Точка их пересечения (обозначим ее О) – центр нашей будущей окружности.
- Для того, чтобы определить радиус окружности, необходимо построить перпендикуляр из точки О на любую из сторон.
- Произвольным радиусом рисуем дугу с центром в точке О так, чтобы она пересекала выбранную сторону (пускай это будет сторона АС) в двух местах.
- Радиусом АО рисуем две окружности, с центрами в точках А и С. Соединяем места пересечения окружностей. Точка пересечения этой линии и стороны АС (обозначим ее Е) – искомый перпендикуляр.
- Измеряем циркулем отрезок ЕО и чертим вписанную окружность.
- Таким образом вы сможете начертить описанный треугольник.
Пятиугольник | |
---|---|
![]() Правильный пятиугольник |
|
Тип | Правильный многоугольник |
Рёбра | 5 |
Символ Шлефли | |
Диаграмма Коксетера — Дынкина | ![]() ![]() ![]() |
Вид симметрии | Диэдрическая группа (D5) |
Площадь | t 2 25 + 10 5 4 = <displaystyle <frac <2><sqrt <25+10<sqrt <5>>>>><4>>=> 5 R 2 4 5 + 5 2 ; <displaystyle <frac <5R^<2>><4>><sqrt <frac <5+<sqrt <5>>><2>>>;> |
Внутренний угол | 108° |
Свойства | |
выпуклый, вписанный, Равносторонний, равноугольный [en] , изотоксальный | |
Медиафайлы на Викискладе |
Правильный пятиугольник (или пентагон от греч. πενταγωνον ) — геометрическая фигура, правильный многоугольник с пятью сторонами.
Содержание
Свойства [ править | править код ]
- У правильного пятиугольника угол равен
α = ( n − 2 ) n ⋅ 180 ∘ = 3 5 ⋅ 180 ∘ = 108 ∘ <displaystyle alpha =<frac <(n-2)>
- Площадь правильного пятиугольника рассчитывается по любой из формул:
S = 5 4 t 2 c t g π 5 = 5 5 + 2 5 4 t 2 = 5 12 R d = 5 2 R 2 sin 2 π 5 = 5 r 2 t g π 5 <displaystyle S=<frac <5><4>>t^<2>mathop <mathrm , где R <displaystyle R>
— радиус описанной окружности, r <displaystyle r>
— радиус вписанной окружности, d <displaystyle d>
— диагональ, t <displaystyle t>
— сторона.
- Высота правильного пятиугольника:
h = tg 72 ∘ 2 t = 5 + 2 5 2 t ≈ 1,539 t <displaystyle h=<frac <operatorname
- Диагонали правильного пятиугольника являются трисектрисами его внутренних углов.
- Отношение диагонали правильного пятиугольника к стороне равно золотому сечению, то есть числу 1 + 5 2 <displaystyle <frac <1+<sqrt <5>>><2>>>
.
Поэтому радиус вписанной окружности, радиус описанной окружности, высоту и площадь правильного пятиугольника можно вычислить и без использования тригонометрических функций:
R>
- Радиус вписанной окружности:
r = 5 5 + 2 5 10 t ≈ 0,688 191 t <displaystyle r=<frac <<sqrt <5>><sqrt <5+2<sqrt <5>>>>><10>>tapprox 0<,>688191
t>
- Радиус описанной окружности:
R = 1 0 5 + 5 10 t = ( 5 − 1 ) r ≈ 0,850 651 t ≈ 1,236 07 r <displaystyle R=<frac <<sqrt <1>>0<sqrt <5+<sqrt <5>>>>><10>>t=(<sqrt <5>>-1)
r>
- Диагональ:
d = Φ 5 R = 5 + 1 2 t ≈ 1,902 R ≈ 1,618 t <displaystyle d=<sqrt <Phi <sqrt <5>>>>R=<frac <<sqrt <5>>+1><2>>tapprox 1<,>902
t>
- Площадь:
S = 5 5 + 2 5 4 t 2 ≈ 1,720 48 t 2 <displaystyle S=<frac <<sqrt <5>><sqrt <5+2<sqrt <5>>>>><4>>t^<2>approx 1<,>72048
t^<2>>
- Правильным пятиугольником невозможно заполнить плоскость без промежутков (см. также Паркет)
- Отношение площадей правильного пятиугольника и другого правильного пятиугольника, образованного пересечением диагоналей исходного (середина пятиугольной звезды)
S s = Φ 4 = 3 Φ + 2 = 3 5 + 7 2 ≈ 6,854 1 <displaystyle <frac >=Phi ^<4>=3Phi +2=<frac <3<sqrt <5>>+7><2>>approx 6<,>8541>где Φ <displaystyle Phi >
— отношение золотого сечения.
Построение [ править | править код ]
Правильный пятиугольник может быть построен с помощью циркуля и линейки или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.
Вот один из методов построения правильного пятиугольника в заданной окружности:
- Постройте окружность, в которую будет вписан пятиугольник, и обозначьте её центр как O. (Это зелёная окружность на схеме справа).
- Выберите на окружности точку A, которая будет одной из вершин пятиугольника. Постройте прямую через O и A.
- Постройте прямую перпендикулярно прямой OA, проходящую через точку O. Обозначьте одно её пересечение с окружностью как точку B.
- Постройте точку C посередине между O и B.
- Проведите окружность с центром в точке C через точку A. Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D.
- Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F.
- Проведите окружность с центром в E через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку G.
- Проведите окружность с центром в F через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку H.
- Постройте правильный пятиугольник AEGHF.
Получение с помощью полоски бумаги [ править | править код ]
Правильный пятиугольник можно получить, завязав узлом полоску бумаги.
В природе [ править | править код ]
Исследования формирования водяного льда на ровной поверхности меди при температурах 100—140 K показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры. [1] Пентасимметрию можно увидеть во многих цветах и некоторых фруктах, например в таких как эта мушмула германская.
Иглокожие, например морские звёзды, обладают пентасимметрией.
Пентасимметрию можно увидеть во многих цветах и некоторых фруктах, например в таких как мушмула германская.
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
Тема этого видеоурока – «Построение правильных многоугольников». На данном занятии мы рассмотрим способы построения правильных многоугольников с помощью циркуля и линейки. Также еще раз дадим определение правильному многоугольнику, изобразим его графически, после чего еще раз убедимся, что центры вписанной и описанной окружностей вокруг такой фигуры будут совпадать.
Тема: Длина окружности и площадь круга
Урок: Построение правильных многоугольников
1. Введение
По традиции, напомним здесь основное определение: выпуклый многоугольник называется правильным, если все его стороны равны и все его углы равны (Рис. 1.) .
В этот многоугольник всегда можно вписать окружность и около него всегда можно описать окружность. Центры обеих окружностей совпадают (точка О на Рис. 1). Также на рисунке приведены радиусы описанной (R ) и вписанной (r) окружностей.
В ходе предыдущих уроков мы выяснили, что базовую роль для описания свойств многоугольников играют биссектрисы его углов и серединные перпендикуляры к его сторонам. Именно на умении строить биссектрисы углов и серединные перпендикуляры отрезков и основывается методика построения правильных многоугольников. Вкратце напомним, как построить серединный перпендикуляр отрезка.
Дан отрезок АВ (Рис. 2). Необходимо построить его серединный перпендикуляр.
1. Проведем окружность с центром в точке А произвольного радиуса R (на рис 2. изображены только фрагменты этой окружности);
2. Аналогично проведем окружность с центром в точке В того же радиуса (Рис. 2);
3. Точки M и N пересечения построенных окружностей соединяем отрезком;
4. Этот отрезок MN и будет серединным перпендикуляром отрезка АВ. Докажем это утверждение. Треугольники MNB и MNA равны по трем сторонам, откуда следует равенство углов при вершине М. Треугольники АNB и MВA также равны по трем сторонам, кроме того, все указанные треугольники – равнобедренные. МН – биссектриса ∆MВA, а следовательно, она же является и высотой, и медианой данного треугольника. Аналогичные рассуждения проводятся и для отрезка NH. Таким образом, получаем, что MN ^ АВ и делит его пополам. Что и требовалось доказать.
Умение строить серединный перпендикуляр отрезка позволяет решать многие задачи. Вот пример одной из них: построить квадрат, если дана его диагональ d (Рис. 3.).
1. На произвольной прямой откладываем отрезок АВ, равный d.
2. По указанному выше алгоритму строим для отрезка АВ серединный перпендикуляр р (Рис. 3).
3. Находим точку М пересечения серединного перпендикуляра с отрезком. Из этой точки на прямой р откладываем отрезки MC = MD = МА.
4. Соединяем точки А, В, С, D отрезками, как показано на Рис. 3.
5. В результате получаем квадрат с диагоналями АВ и СD.
Напомним и еще одно важное построение – построение биссектрисы угла.
Пусть дан угол ÐО (Рис. 4). Необходимо построить его биссектрису.
1. Проводим окружность с центром в точке О некоторого радиуса R. На Рис. 4 эта окружность показана фрагментарно.
2. Находим точки А и В пересечения этой окружности со сторонами ÐО.
3. Строим окружность с центром в точке А некоторого радиуса (Рис. 4).
4. Аналогично строим окружность с центром в точке В и того же радиуса .
5. Находим точку L пересечения этих окружностей .
6. Соединяем точки L и О отрезком.
7. Полученный отрезок LО – биссектриса угла (это утверждение легко доказывается при учете равенства треугольников ОLА и ОLВ).
Важнейшим из правильных многоугольников является равносторонний треугольник.
Задача: построить правильный треугольник АВС, сторона которого равна а.
Построение (Рис. 5):
1. На произвольной прямой выбираем точку А и при помощи линейки откладываем на этой прямой отрезок АС = а.
2. Строим две окружности одинакового радиуса а – с центром в точке А и с центром в точке С (на Рис. 5 фрагменты окружностей показаны пунктиром). Для этого ножки циркуля с помощью линейки разводим на нужное расстояние.
3. Находим точку В пересечения этих окружностей и соединяем ее с точками А и С.
4. Получили искомый правильный треугольник АВС. Задача решена.
Рассмотрим алгоритм построения правильного шестиугольника.
Задача: построить правильный шестиугольник со стороной а6 .
Построение (Рис. 6):
1. Для начала вспомним доказанное на предыдущих уроках свойство шестиугольника: длина его стороны равна радиусу описанной окружности: .
2. Построим окружность с центром в произвольной точке О и радиусом .
Угол между ножками циркуля не меняем.
3. Поместив одну ножку циркуля в произвольную точки А1 на окружности, при помощи второй ножки отметим на той же окружности точку А2 и соединим ее с точкой А1. Получим первую сторону шестиугольника.
4. Повторив те же действия еще 4 раза, получим остальные вершины искомой фигуры.
5. В результате получим A1 … А6 – правильный шестиугольник с центром в точке О.
Следующая задача демонстрирует важный прием, необходимый при построении правильных многоугольников.
Удвоение числа сторон правильного многоугольника.
Дан правильный n-угольник А1 … Аn (Рис. 7). Построить правильный 2n-угольник А1 В1 А2 В2 … АnВn, т. е. правильный многоугольник с числом сторон вдвое большим, чем у исходного.
1. Восстановим серединные перпендикуляры к двум соседним сторонам исходного многоугольника и найдем точку О их пересечения (показаны пунктиром на Рис. 7).
2. Проведем окружность с центром в точке О и радиусом, равным ОА1. Данная окружность пройдет через все вершины многоугольника, т. к. является описанной около него.
3. При помощи серединных перпендикуляров к сторонам многоугольника, опущенным из точки О, разделим все его стороны и все дуги окружности, заключенные между его соседними вершинами, пополам. Для этого достаточно просто опустить перпендикуляры из центра окружности на стороны и продлить их до пересечения с окружностью.
4. Точки В1, В2, … Вn пересечения серединных перпендикуляров с окружностью соединить с вершинами многоугольника А1 … Аn отрезками, как показано на Рис. 7.
5. Полученная фигура и будет искомым правильным многоугольником, число сторон которого вдвое больше числа сторон исходного многоугольника.
На данном уроке было рассмотрено построение правильного многоугольника при помощи циркуля и линейки. Важно заметить, что не все правильные многоугольники могут быть построены таким образом.
Доказано, что так нельзя построить, например, правильный 7-угольник, а вот правильный 17-угольник можно построить этим способом.
Список рекомендованной литературы
1. Атанасян Л. С. и др. Геометрия 7 – 9 классы. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2010.
2. Фарков А. В. Тесты по геометрии: 9 класс. К учебнику Л. С. Атанасяна и др. – М.: Экзамен, 2010.
3. Погорелов А. В. Геометрия, уч. для 7 – 11 кл. общеобр. учрежд. – М.: Просвещение, 1995.
Рекомендованные ссылки на интернет-ресурсы
2. Средняя математическая интернет-школа (Источник).
Рекомендованное домашнее задание
1. Учебник Погорелова (см. список литературы), стр. 211, контрольный вопрос № 12.
2. Учебник Погорелова (см. список литературы), стр. 212, задачи 14, 15.
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.