No Image

Как убрать корень из уравнения

СОДЕРЖАНИЕ
19 просмотров
05 мая 2020

  • Как решать уравнения с корнями
  • Что такое корень уравнения
  • Как найти корни кубического уравнения

В отличие от других типов уравнений, например, квадратных или систем линейных уравнений, для решения уравнений с корнями, или точнее, иррациональных уравнений, не существует стандартного алгоритма. В каждом конкретном случае необходимо подобрать наиболее подходящий метод решения, исходя из «внешнего вида» и особенностей уравнения.

Возведение частей уравнения в одинаковую степень.

Чаще всего для решения уравнений с корнями (иррациональных уравнений) применяется возведение обеих частей уравнения в одну и ту же степень. Как правило, в степень, равную степени корня (в квадрат для корня квадратного, в куб для корня кубического). При этом следует иметь ввиду, что при возведении левой и правой части уравнения в четную степень у него могут появиться «лишние» корни. Поэтому, в этом случае следует проверять полученные корни путем подстановки их в уравнение. Особое внимание при решении уравнений с квадратными (четными) корнями следует уделить области допустимых значений переменной (ОДЗ). Иногда одной только оценки ОДЗ достаточно для решения или существенного «упрощения» уравнения.

Пример. Решить уравнение:

Возводим обе части уравнения в квадрат:

(√(5х-16))²=(х-2)², откуда последовательно получаем:

Решая полученное квадратное уравнение, находим его корни:

Подставив оба найденных корня в исходное уравнение, получаем верное равенство. Следовательно оба числа являются решениями уравнения.

Метод введения новой переменной.

Иногда найти корни «уравнения с корнями» (иррационального уравнения) удобнее методом введения новых переменных. Фактически, суть этого метода сводится просто к более компактной записи решения, т.е. вместо того, чтобы каждый раз писать громоздкое выражение, его заменяют условным обозначением.

Пример. Решить уравнение: 2х+√х-3=0

Можно решить данное уравнение и возведением обеих частей в квадрат. Однако, сами вычисления при этом будут выглядеть довольно-таки громоздко. При введении новой переменной процесс решения получится намного элегантнее:

Введем новую переменную: у=√х

После чего получаем обыкновенное квадратное уравнение:

2у²+у-3=0, с переменной у.

Решив полученное уравнение, находим два корня:

подставляя найденные корни в выражение для новой переменной (у), получаем:

Так как значение квадратного корня не может быть отрицательным числом (если не затрагивать область комплексных чисел), то получаем единственное решение:

Из этой статьи вы узнаете:

  • что такое «извлечение корня»;
  • в каких случаях он извлекается;
  • принципы нахождения значения корня;
  • основные способы извлечения корня из натуральных и дробных чисел.

Что такое «извлечение корня»

Для начала введем определение «извлечение корня».

Извлечение корня — процесс нахождения значения корня.

При извлечении корня n -ной степени из числа a, мы находим число b , n -ная степень которого равняется a . Если мы нашли такое число b , можно утверждать, что корень извлечен.

Выражения «извлечение корня» и «нахождение значения корня» равнозначны.

В каких случаях извлекается корень?

Корень n -ной степени можно извлечь из числа a точно в случае, если a можно представить в виде n -ной степени некоторого числа b .

4 = 2 × 2 , следовательно, из числа 4 можно точно извлечь квадратный корень, который равен 2

Когда корень n -ной степени из числа a невозможно представить в виде n -ной степени числа b , то такой корень не извлекается либо извлекается только приближенное значение корня с точностью до любого десятичного разряда.

Принципы нахождения значения корня и способы их извлечения

  • Использование таблицы квадратов, таблицы кубов и т.д.
  • Разложение подкоренного выражения (числа) на простые множители
  • Извлечение корней из дробных чисел
  • Извлечение корня из отрицательного числа
  • Поразрядное нахождение значения корня

Необходимо понять, по каким принципам находится значение корней, и каким образом они извлекаются.

Главный принцип нахождения значения корней — основываться на свойствах корней, в том числе на равенстве: b n n = b , которое является справедливым для любого неотрицательного числа b .

Начать следует с наиболее простого и очевидного способа: таблицы квадратов, кубов и т.д.

Когда таблицы под руками нет, вам поможет способ разложения подкоренного числа на простые множители (способ незатейливый).

Стоит уделить внимание извлечению корня из отрицательного числа, что является возможным для корней с нечетными показателями.

Изучим, как извлекать корни из дробных чисел, в том числе из смешанных чисел, обыкновенных и десятичных дробей.

И потихоньку рассмотрим способ поразрядного нахождения значения корня — наиболее сложного и многоступенчатого.

Использование таблицы квадратов, кубов и т.д.

Таблица квадратов включает в себя все числа от 0 до 99 и состоит из 2 зон: в первой зоне можно составить любое число до 99 с помощью вертикального столбца с десятками и горизонтальной строки с единицами, во второй зоне содержатся все квадраты образуемых чисел.

Таблица квадратов

Таблица квадратов единицы
1 2 3 4 5 6 7 8 9
десятки 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2041
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801
Читайте также:  Точный вольтметр на arduino

Существуют также таблицы кубов, четвертой степени и т.д., которые созданы по принципу, аналогичному таблице квадратов.

Таблица кубов

Таблица кубов единицы
1 2 3 4 5 6 7 8 9
десятки 1 8 27 64 125 216 343 512 729
1 1000 1 331 1 728 2 197 2 744 3 375 4 096 4 913 5 832 6 859
2 8000 9 261 10 648 12 167 13 824 15 625 17 576 19 683 21 952 24 389
3 27000 29 791 32 768 35 937 39 304 42 875 46 656 50 653 54 872 59 319
4 64000 68 921 74 088 79 507 85 184 91 125 97 336 103 823 110 592 117 649
5 125000 132 651 140 608 148 877 157 464 166 375 175 616 185 193 195 112 205 379
6 216000 226 981 238 328 250 047 262 144 274 625 287 496 300 763 314 432 328 509
7 343000 357 911 373 248 389 017 405 224 421 875 438 976 456 533 474 552 493 039
8 512000 531 441 551 368 571 787 592 704 614 125 636 056 658 503 681 472 704 969
729000 753 571 778 688 804 357 830 584 857 375 884 736 912 673 941 192 970 299

Принцип функционирования таких таблиц прост, однако их часто нет под рукой, что значительно усложняет процесс извлечение корня, поэтому необходимо владеть минимум несколькими способами извлечения корней.

Разложение подкоренного числа на простые множители

Наиболее удобный способ нахождения значения корня после таблицы квадратов и кубов.

Способ разложения подкоренного числа на простые множители подразумевает под собой представление числа в виде степени с необходимым показателем, что дает нам возможность получить значение корня.

Извлечем квадратный корень из 144 .

Разложим 144 на простые множители:

Таким образом: 144 = 2 × 2 × 2 × 2 × 3 × 3 = ( 2 × 2 ) 2 × 3 2 = ( 2 × 2 × 3 ) 2 = 12 2 . Следовательно, 144 = 12 2 = 12 .

Также при использовании свойств степени и корней можно записать преобразование немного по-другому:

144 = 2 × 2 × 2 × 2 × 3 × 3 = 2 4 × 3 2 = 2 4 × 3 2 = 2 2 × 3 = 12

144 = 12 – окончательный ответ.

Извлечение корней из дробных чисел

Запоминаем: любое дробное число должно быть записано в виде обыкновенной дроби.

Следуя свойству корня из частного, справедливым является следующее равенство:

p q n = p n q n . Исходя из этого равенства, необходимо воспользоваться правилом извлечения корня из дроби: корень из дроби равен от деления корня числителя на корень знаменателя.

Рассмотрим пример извлечения корня из десятичной дроби, поскольку извлечь корень из обыкновенной дроби можно с помощью таблицы.

Необходимо извлечь кубический корень из 474 , 552 . Первым делом, представим десятичную дробь в виде обыкновенной: 474 , 552 = 474552 / 1000 . Из этого следует: 474552 1000 3 = 474552 3 1000 3 . Затем можно приступить к процессу извлечения кубических корней в числителе и знаменателе:

474552 = 2 × 2 × 2 × 3 × 3 × 3 × 13 × 13 × 13 = ( 2 × 3 × 13 ) 3 = 78 3 и 1000 = 10 3 , то

474552 3 = 78 3 3 = 78 и 1000 3 = 10 3 3 = 10 .

Завершаем вычисления: 474552 3 1000 3 = 78 10 = 7 , 8 .

Извлечение корня из отрицательных чисел

Если знаменатель является нечетным числом, то число под знаком корня может оказаться отрицательным. Из этого следует: для отрицательного числа – a и нечетного показателя корня 2 n – 1 справедливо равенство:

– a 2 × n – 1 = – a 2 × n – 1

Правило извлечения нечетной степени из отрицательных чисел: чтобы извлечь корень из отрицательного числа необходимо извлечь корень из противоположного ему положительного числа и поставить перед ним знак минус.

– 12 209 243 5 . Для начала необходимо преобразовать выражение, чтобы под знаком корня оказалось положительно число:

– 12 209 243 5 = 12 209 243 – 5 ​​​​​​

Затем следует заменить смешанное число обыкновенной дробью:

12 209 243 – 5 = 3125 243 – 5

Пользуясь правилом извлечения корней из обыкновенной дроби, извлекаем:

3125 243 – 5 = – 3125 5 243 5

Вычисляем корни в числителе и знаменателе:

– 3125 5 243 5 = – 5 5 5 3 5 5 = – 5 3 = – 1 2 3

Краткая запись решения:

– 12 209 243 5 = 12 209 243 – 5 = 3125 243 – 5 = – 3125 5 243 5 = – 5 5 5 3 5 5 = – 5 3 = – 1 2 3 .

Ответ: – 12 209 243 5 = – 1 2 3 .

Поразрядное нахождение значения корня

Бывают случаи, когда под корнем находится число, которое не получается представить в виде n – ной степени некоторого числа. Но необходимо знать значение корня с точностью до некоторого знака.

В таком случае необходимо воспользоваться алгоритмом поразрядного нахождения значения корня, с помощью которого можно получить достаточное количество значений искомого числа.

Читайте также:  Как перекинуть ссылку с телефона на компьютер

Как это происходит, разберем на примере извлечения квадратного корня из 5 .

Сперва необходимо найти значение разряда единиц. Для этого начнем перебирать значения 0 , 1 , 2 , . . . , 9 , вычисляя при этом 0 2 , 1 2 , . . . , 9 2 до необходимого значения, которое больше, чем подкоренное число 5 . Все это удобно представить в виде таблицы:

Возможное значение корня 1 2 3
Это значение в степени 1 4 9

Значение ряда единиц равняется 2 ( т а к к а к 2 2 5 , а 2 3 > 5 ) . Переходим в разряду десятых — будем возводить в квадрат числа 2 , 0 , 2 , 1 , 2 , 2 , . . . , 2 , 9 , , сравнивая полученные значения с числом 5 .

Возможное значение корня 2,0 2,1 2,2 2,3
Это значение в степени 4 4,41 4,84 5,29

Поскольку 2 , 2 2 5 , а 2 , 3 2 > 5 , то значение десятых равняется 2 . Переходим к нахождению значения сотых:

Возможное значение корня 2.20 2,21 2,22 2,23 2,24
Это значение в степени 4,84 4,8841 4,8294 4,9729 5,0176

Таким образом, найдено значение корня из пяти — 2 , 23 . Можно находить значения корня дальше:

2 , 236 , 2 , 2360 , 2 , 23606 , 2 , 236067 , . . .

Итак, мы изучили несколько наиболее распространенных способов нахождения значения корня, воспользоваться которыми можно в любой ситуации.

kor.giorgio@gmail.com Выход

Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> –> sqrt(x) – квадратный корень x
x^(1/n) – корень степени n

Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство

В решении ошибка
Если вы считаете, что задача решена не правильно, то нажмите на эту кнопку.

Решение иррациональных уравнений и неравенств

1. Иррациональные уравнения

Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.

Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.

ПРИМЕР 1.
( sqrt[Large6
ormalsize] = sqrt[Large6
ormalsize] <2x-6>)

Возведя обе части уравнения в шестую степень, получим:
( x^2-5x = 2x-6 Rightarrow )
( x^2-7x +6= 0 Rightarrow )
( x_1=1, ; x_2=6 )
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид ( sqrt[Large6
ormalsize] <-4>= sqrt[Large6
ormalsize] <-4>), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид ( sqrt[Large6
ormalsize] <6>= sqrt[Large6
ormalsize] <6>) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6

Введя новую переменную ( u=x^2-x), получим существенно более простое иррациональное уравнение:
( sqrt+sqrt = sqrt <2u+21>).
Возведём обе части уравнения в квадрат:
( (sqrt+sqrt)^2 = (sqrt<2u+21>)^2 Rightarrow )
( u+2 +2sqrtsqrt +u+7 = 2u+21 Rightarrow )
( sqrt <(u+2)(u+7)>= 6 Rightarrow )
( u^2+9u+14=36 Rightarrow )
( u^2+9u-22=0 Rightarrow )
( u_1=2, ; u_2=-11 )
Проверка найденных значений их подстановкой в уравнение ( sqrt+sqrt = sqrt <2u+21>) показывает, что ( u_1=2 ) — корень уравнения, а ( u_2=-11 ) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение ( x^2-x=2 Rightarrow x^2-x-2=0 ), решив которое находим два корня: ( x_1=2, ; x_2=-1 )
Ответ: 2; -1.

Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
( 2x^2 +6 -2sqrt <2x^2-3x+2>= 3x+12 Rightarrow )
( 2x^2 -3x +2 -2sqrt <2x^2-3x+2>-8 = 0 Rightarrow )

Читайте также:  Как в инскейпе сделать альбомный лист

Введя новую переменную ( y=sqrt <2x^2-3x+2>), получим: ( y^2-2y-8=0 ), откуда ( y_1=4, ; y_2=-2 ). Значит, исходное уравнение равносильно следующей совокупности уравнений:
( left[egin sqrt <2x^2-3x+2>=4 \ sqrt <2x^2-3x+2>= -2 end
ight. )

Из первого уравнения этой совокупности находим: ( x_1=3<,>5; ; x_2=-2 ). Второе уравнение корней не имеет.

Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение ( sqrt <2x^2-3x+2>=4). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.

Областью определения уравнения является луч ( [5; ; +infty) ). В этой области выражение ( sqrt ) можно представить следующим образом: ( sqrt = sqrtsqrt ). Теперь уравнение можно переписать так:
( x+x -5 +2sqrt
sqrt +2sqrt +2sqrt -48 = 0 Rightarrow ) ( (sqrt)^2 +2sqrtsqrt +(sqrt)^2 +2(sqrt+sqrt) -48 = 0 Rightarrow ) ( (sqrt +sqrt)^2 +2(sqrt+sqrt) -48 = 0 )

Введя новую переменную ( y= sqrt +sqrt ), получим квадратное уравнение ( y^2+2y-48=0 ), из которого находим: ( y_1=6, ; y_2=-8 ). Таким образом, задача свелась к решению совокупности уравнений:
( left[egin sqrt +sqrt
=6 \ sqrt +sqrt = -8 end
ight. )
Из первого уравнения совокупности находим ( x= left( frac<41> <12>
ight)^2 ), второе уравнение совокупности решений явно не имеет.

Проверка. Нетрудно проверить (подстановкой), что ( x= left( frac<41> <12>
ight)^2 ) — является корнем уравнения ( sqrt +sqrt =6 ). Но это уравнение равносильно исходному уравнению, значит, ( x= left( frac<41> <12>
ight)^2 ) — является корнем и исходного уравнения.
Ответ: ( x= left( frac<41> <12>
ight)^2 )

Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.

ПРИМЕР 5.
( sqrt[Large4
ormalsize] <1-x>+ sqrt[Large4
ormalsize] <15+x>=2 )

Введём новые переменные: ( left<egin u=sqrt[Large4
ormalsize] <1-x>\ v=sqrt[Large4
ormalsize] <15+x>end

ight. )

Тогда уравнение примет вид (u+v=2). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
( left<egin u^4=1-x \ v^4= 15+x end
ight. )

Сложим уравнения последней системы: (u^4 +v^4 =16). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
( left<egin u+v=2 \ u^4 +v^4 =16 end
ight. )
Решив её, находим: ( left<egin
u_1=0 \ v_1 =2; end
ight. ) ( left<egin
u_2=2 \ v_2 =0 end
ight. )

Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: ( left<egin sqrt[Large4
ormalsize] <1-x>=0 \ sqrt[Large4
ormalsize] <15+x>=2; end

ight. ) ( left<egin
sqrt[Large4
ormalsize] <1-x>=2 \ sqrt[Large4
ormalsize] <15+x>=0 end

ight. )

Решив эту совокупность, находим: (x_1=1, ; x_2=-15 )

Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.

ПРИМЕР 6.
( sqrt[Large3
ormalsize] <2x+1>+ sqrt[Large3
ormalsize] <6x+1>= sqrt[Large3
ormalsize] <2x-1>)

Возведём обе части уравнения в куб:
( 2x+1 + 3sqrt[Large3
ormalsize] <(2x+1)^2>cdot sqrt[Large3
ormalsize] <6x+1>+ 3sqrt[Large3
ormalsize] <2x+1>cdot sqrt[Large3
ormalsize] <(6x+1)^2>+6x+1 = 2x-1 Rightarrow ) ( 3sqrt[Large3
ormalsize] <2x+1>cdot sqrt[Large3
ormalsize] <6x+1>cdot (3sqrt[Large3
ormalsize] <2x+1>+ sqrt[Large3
ormalsize] <6x+1>) = -6x-3 )

Воспользовавшись исходным уравнением, заменим сумму ( sqrt[Large3
ormalsize] <2x+1>+ sqrt[Large3
ormalsize] <6x+1>) на выражение ( sqrt[Large3
ormalsize] <2x-1>):
( 3sqrt[Large3
ormalsize] <2x+1>cdot sqrt[Large3
ormalsize] <6x+1>cdot sqrt[Large3
ormalsize] <2x-1>= -6x-3 Rightarrow )
( 3sqrt[Large3
ormalsize] < (2x+1)(6x+1)(2x-1) >= -2x-1 )
Возведём обе части в куб:
( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 Rightarrow )
( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 Rightarrow )
( 16x^2(2x+1) =0 Rightarrow )
( x_1= -0<,>5; ; x_2=0 )

Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.

2. Иррациональные неравенства

Рассмотрим иррациональное неравенство вида ( sqrt 0 ). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.

Таким образом, иррациональное неравенство ( sqrt 0 \ f(x) 0 \ x^2-x-12 0 \ x > -12 end
ight. )

Получаем: ( x geq 4)


Ответ: ( x geq 4)

Рассмотрим теперь неравенство вида ( sqrt > g(x) ).

Ясно, во-первых, что его решения должны удовлетворять условию ( f(x) geq 0 ).
Во-вторых, замечаем, что при ( g(x) g(x) ) не вызывает сомнений.
В-третьих, замечаем, что если ( g(x) geq 0 ), то можно возвести в квадрат обе части заданного иррационального неравенства.

Таким образом, иррациональное неравенство ( sqrt > g(x) ) равносильно совокупности систем неравенств:
( left<egin f(x) geq 0 \ g(x) (g(x))^2 end
ight. )

Во второй системе первое неравенство является следствием третьего, его можно не писать.

Данное неравенство равносильно совокупности систем неравенств:
( left<egin x^2-x-12 geq 0 \ x 0 )

Преобразуем неравенство к виду ( x^2+3x-10 +3sqrt >0 ) и введём новую переменную ( y= sqrt ). Тогда последнее неравенство примет вид ( y^2+3y-10 >0 ), откуда находим, что либо (y 2).

Таким образом, задача сводится к решению совокупности двух неравенств:
( left[egin sqrt 2 end
ight. )

Первое неравенство не имеет решений, а из второго находим:
( x^2+3x >4 Rightarrow )
( (x+4)(x-1) >0 Rightarrow )
( x 1 )
Ответ: ( x 1 ).

Комментировать
19 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock
detector