Формула для вычислений
Функция EXCEL или инструмент Анализа данных
Массив1 — это ячейка интервала значений.
Массив2 — это второй интервал ячеек со значениями
Возвращает коэффициент корреляции меду интервалами ячеек массив1 и массив2.
Оценка значимости коэффициента парной корреляции с использованием t – критерия Стьюдента.
Вычисленное по этой формуле значение tнабл сравнивается с критическим значением t-критерия, которое берется из таблицы значений t Стьюдента с учетом заданного уровня значимости и числа степеней свободы (n-2).
СТЬЮДРАСПОБР (вероятность; степени_свободы)
Вероятность — вероятность, соответствующая двустороннему распределению Стьюдента.
Степени_свободы — число степеней свободы, характеризующее распределение.
Возвращает t-значение распределения Стьюдента как функцию вероятности и числа степеней свободы.
Матрица коэффициентов парной корреляции
Обращение к средствам анализа данных. Они доступны через команду Анализ данных меню Сервис.
Для вычисления матрицы коэффициентов парной корреляции R следует воспользоваться инструментом Корреляция.
Инструмент Корреляция применяется, если имеется более двух переменных измерений для каждого объекта. В результате выдается таблица, корреляционная матрица, показывающая значение функции КОРРЕЛ для каждой возможной пары переменных измерений. Любое значение коэффициента корреляции должно находиться в диапазоне от -1 до +1 включительно.
Регрессионный анализ в excel
Формула для вычислений
Функция EXCEL или инструмент Анализа данных
Оценка параметров модели парной регрессии
Смысл аргументов функции
изв_знач_у – диапазон значений у;
изв_знач_х – диапазон значений х;
константа – устанавливается на 0, если заранее известно, что свободный член равен 0 и на 1 в противном случае;
стат – устанавливается на 0, если не нужен вывод дополнительных сведений регрессионного анализа и на 1 в противном случае.
Возвращает следующую информацию
Значение коэффициента b1
Значение коэффициента b
Среднеквадратическое отклонение b1
Среднеквадратическое отклонение b
Коэффициент детерминации R 2
Среднеквадратическое отклонение у
Число степеней свободы
Регрессионная сумма квадратов
Остаточная сумма квадратов
Оценка параметров модели парной и множественной линейной регрессии.
Для вычисления параметров уравнения регрессии следует воспользоваться инструментом Регрессия
Возвращает подробную информацию о параметрах модели, качестве модели, расчетных значениях и остатках в виде четырех таблиц: Регрессионная статистика, Дисперсионный анализ, Коэффициенты, ВЫВОД ОСТАТКА.
Так же может быть получен график подбора.
Оценка значимости параметров модели линейной регрессии с использованием t – критерия Стьюдента.
,
Вычисленное по этой формуле значение сравнивается с критическим значением t-критерия, которое берется из таблицы значений t Стьюдента с учетом заданного уровня значимости и числа степеней свободы (n-k-1), где k количество факторов в модели.
Вероятность — вероятность, соответствующая двустороннему распределению Стьюдента.
Степени_свободы — число степеней свободы, характеризующее распределение.
Возвращает t-значение распределения Стьюдента как функцию вероятности и числа степеней свободы.
Проверка значимости модели регрессии с использованием
Вероятность — это вероятность, связанная с F-распределением.
Степени_свободы 1 — это числитель степеней свободы-1–k.
Степени_свободы 2 — это знаменатель степеней свободы-.2 – (n – k – 1),
где k – количество факторов, включенных в модель,
Возвращает обратное значение для F-распределения вероятностей.
FРАСПОБР можно использовать, чтобы определить критические значения F-распределения.
Чтобы определить критическое значение F, нужно использовать уровень значимости как аргумент вероятность для FРАСПОБР.
Значения F-критерия Фишера при уровне значимости =0,05
Для того, чтобы рассчитать t-критерий Стьюдента (для зависимых и для независимых выборок) в Excell необходимо сделать следующие шаги:
1.Вносим значения для двух переменных в таблицу (Например Переменная 1 и Переменная 2)
2. Ставим курсор в пустую ячейку
3. На панеле инструментов нажимаем кнопку fx (вставить формулу)
4. В открывшемся окне «Мастер функций» в поле «Категории» выбираем Полный алфавитный перечень
5. Затем в поле «Выберите функцию» находим функцию TTECT, которая возвращает вероятность, соответствующую критерию Стьюдента.
5.1. Нажимаем Ок
6. В открывшемся окне «Аргументы функции» в поле Массив1 вносим номера ячеек, содержащие значения Переменной 1, в поле Массив2 вносим номера ячеек, содержащие значения Переменной2.
7. В поле «Хвосты» пишем 2 (критерий будет рассчитываться используя двустороннее распределение, как и в SPSS); либо 1 (критерий будет рассчитываться используя одностороннее распределение).
Важно!
8. В поле «Тип» пишем 1 (рассчитывается, если выборки зависимые); либо 2 или 3 (если выборки независимые).
Функция СТЮДРАСПОБР предназначена для расчета значения квантиля уровня, соответствующего известной вероятности (указывается в качестве первого аргумента), распределения Стьюдента для известных степеней свободы и возвращает обратное t-распределение.
Распределение Стьюдента и нормальное распределение в Excel
Рассматриваемая функция возвращает значение t, соответствующее условию P(|x|>t)=p. Здесь x является значением некоторой случайной величины с распределением Стьюдента, у которого число степеней свобод соответствует k (второй аргумент функции СТЮДРАСПОБР).
- Распределение Стьюдента является одним из видов распределения случайной величины, близкое к нормальному распределению с характерным отличием – сниженная концентрацией отклонений в средней части распределения. Иное название – t-распределение.
- Квантилем считается некоторое значение, которое с определенной вероятностью (фиксированной) не будет превышено случайной величиной.
- Функция СТЮДРАСПОБР считается устаревшей начиная с версии MS Office 2010. Она оставлена для обеспечения совместимости с другими табличными редакторами и документами, созданными в более старых версиях табличного редактора. В новых версиях следует использовать усовершенствованные аналоги: СТЬЮДЕНТ.ОБР.2Х или СТЬЮДЕНТ.ОБР.
Ниже рассмотрим примеры использования функции СТЮДРАСПОБР в Excel.
Определение одностороннего и двустороннего t распределение Стьюдента
Пример 1. Определить односторонне и двустороннее t-значения для распределения Стьюдента, характеризующееся вероятностью 0,17 и числом степени свобод 16.
Вид таблицы данных:
Для расчета двустороннего t-значения используем функцию:
Для двустороннего t используем удвоенное значение вероятности:
В результате получим:
Число степеней свободы в распределении Стьюдента
Пример 2. Сгенерировать 8 случайных чисел с использованием функции СЛЧИС, для которых распределение Стьюдента имеет 4 степени свободы.
Поскольку вероятность того, что случайна величина примет как отрицательное, так и положительное значение является одинаковой и равна 0,5 (распределение Стьюдента симметрично относительно вертикальной оси графика), используем функцию ЕСЛИ для проверки значений.
Выделим 8 ячеек и запишем следующую функцию (вводить как формулу массива CTRL+SHIFT+Enter):
То есть, если случайное значение вероятности, сгенерированное функцией СЛЧИС меньше 0,5, будет сгенерировано отрицательное t-значение, иначе – положительное.
Как пользоваться функцией распределения Стьюдента СТЮДРАСПОБР В EXCEL
Функция имеет следующий синтаксис:
- вероятность – обязательный для заполнения, принимает числовое значение вероятности для двустороннего распределения Стьюдента из диапазона от 0 (не включительно) до 1.
- степени_свободы – обязательный для заполнения, принимает числовое значение степеней свободы, которые определяют исследуемое распределение.
- Если один из аргументов функции указан в виде значения нечислового типа данных, результатом выполнения рассматриваемой функции будет код ошибки #ЗНАЧ!. Логические значения, имена и текстовые строки, преобразуемые в числа, не приводят к возникновению ошибки. Например, функция =СТЮДРАСПОБР(“0,4”;ИСТИНА) вернет значение 1,32638.
- Если аргумент вероятность задан числом, не находящимся в промежутке от 0 (не включительно) до 1, функция СТЮДРАСПОБР вернет код ошибки #ЧИСЛО!. Аналогичная ошибка возникает, если аргумент степени_свободы задан числом, которое меньше 1.
- Для расчета односторонней t-величины следует в качестве аргумента вероятность указать значение удвоенной вероятности.