Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .
ИЗОБРАЖЕНИЕ ВПИСАННЫХ И ОПИСАННЫХ ОКОЛО ОКРУЖНОСТИ МНОГОУГОЛЬНИКОВ
Задание: Дано изображение АВС произвольного треугольника А 1 В 1 С 1 , вписанного в окружность. Построить изображение высоты треугольника и биссектрисы, проведенных из вершины В 1 .
K 1 L 1 A 1 C 1 , OK 1 L 1 .
Соответственные построения проводим на изображении АВС треугольника А 1 В 1 С 1 , вписанного в окружность.
Задание: построить изображение касательной к окружности в точке А.
Строим эллипс с центром в точке О.
Проводим диаметр АВ и сопряженный ему диаметр DC .
Проводим АК DC
АК – искомая касательная.
Задание: построить изображение прямоугольного треугольника вписанного в окружность.
чертеж — оригинал изображение
В прямоугольном треугольнике центром описанной окружности является середина гипотенузы.
Задание: построить изображение равнобедренного треугольника.
чертеж — оригинал изображение
Для построения изображения равнобедренного треугольника достаточно построить два сопряженных диаметра. В случае остроугольного и тупоугольного равнобедренных треугольников строят хорду параллельную одному из сопряженных диаметров, которая послужит основанием треугольника. В случае, когда речь идет о прямоугольном равнобедренном треугольнике, один из сопряженных диаметров послужит основанием искомого треугольника.
Вершина искомого треугольника будет лежать на конце другого диаметра.
Задание: построить изображение правильного треугольника вписанного в окружность.
чертеж — оригинал изображение
Задание: построить изображение прямоугольника вписанного в окружность.
чертеж — оригинал изображение
Задание: построить изображение вписанной в окружность равнобокой трапеции.
чертеж – оригинал изображение
Задание: построить изображение квадрата вписанного в окружность.
чертеж – оригинал изображение
Задание: построить изображение правильного шестиугольника вписанного в окружность
Проведем ω(О; ОА 1 ), (А 1 А 4 ) ( MN ), О = (А 1 А 4 ) ( MN ), ОА 1 = R .
1.Строим эллипс (с центром О ).
2. Строим произвольный диаметр А′ 1 А′ 4 и сопряженный ему диаметр MN .
Задание: построить изображение описанного около окружности прямоугольного треугольника.
чертеж — оригинал изображение
Для построения изображения описанного около окружности прямоугольного треугольника используют тот факт, что его катеты это касательные к окружности в концах двух его сопряженных диаметров.
чертеж — оригинал изображение
Строим эллипс с центром в точке О и два сопряженных диаметра MN и KL .
Из точки В , лежащей на продолжении диаметра KL , проводим две касательные ( Р и Q – точки касания) до пересечения с прямой АС ( АС MN ).
Треугольник АВС является искомым равнобедренным треугольником.
Задание: построить изображение описанного около окружности равностороннего треугольника.
чертеж — оригинал изображение
Построение равностороннего треугольника аналогично построению равнобедренного треугольника. За исключением того, что здесь точку В выбирают не произвольно, а так, чтобы OL = LB .
Задание: построить изображение описанного около окружности квадрата.
чертеж — оригинал изображение
Стороны квадрата лежат на касательных к окружности, проходящих в концах сопряженных диаметром MN и KL . Точки касания делят стороны описанного квадрата пополам.
Задание: построить изображение ромба описанного около окружности.
чертеж — оригинал изображение
Диагоналям ромба АС и BD принадлежат сопряженные диаметры эллипса KL и MN соответственно. Одну из вершин ромба выбираем произвольно, например, вершину С . Из этой вершины проводим касательные отрезки. Например, отрезок CD касается эллипса в точке Р .
Замечание: точка Р не должна делить отрезок CD пополам, иначе, получим изображение описанного квадрата.
Задание: построить изображение описанной около окружности равнобокой трапеции.
чертеж — оригинал изображение
При построении изображения описанной около окружности равнобокой трапеции стоит учитывать, что диаметр K 1 L 1 перпендикулярен основаниям В 1 С 1 и А 1 D 1 и делит их пополам.
Строим касательные к эллипсу, проходящие через точки К и L , параллельные диаметру MN ( MN и KL сопряженные диаметры). Откладываем два равных отрезка КВ и КС , так чтобы КС был меньше ON . Через точки В и С проводим касательные к эллипсу. Точки пересечения этих касательных с касательной, проведенной в точке L , дают вершины A и D .
Второй способ:
Строим вписанную в окружность трапеции (см.выше). Затем проводим касательные к эллипсу параллельные сторонам трапеции. Точки пересечения касательных – вершимы искомой описанной равнобокой трапеции.
Задание: построить изображение описанного около окружности шестиугольника.
В статье “Параллельное проектирование как метод изображения пространственных фигур на плоскости” было рассказано о сути метода параллельного проектирования и его свойствах. Но как показывает практика, учащимся трудно воспринимать теоретические выкладки без демонстрации на конкретных примерах.
В данной статье покажем, как использовать свойства параллельного проектирования и свойства известных школьникам плоских фигур (треугольника, параллелограмма, трапеции, круга и шестиугольника) для изображения этих фигур при параллельном проектировании.
1. Изображение треугольника
1) Любой треугольник (прямоугольный, равнобедренный, правильной) изображается произвольным треугольником в удобном расположении на рисунке.
2) Если ΔA1B1C1 – прямоугольный, то изображение направлений двух его высот (катетов) задано. Произвольно изображаются высота, опущенная на гипотенузу, и центр вписанной окружности. Изображение перпендикуляра, опущенного из заданной точки гипотенузы на какой-либо катет, является отрезком, параллельным другому катету.
3) Если ΔA1B1C1 – равнобедренный, то изображение медианы B1D1 является изображением высоты и биссектрисы ΔA1B1C1 . Изображение центра вписанной и описанной окружностей принадлежат BD.
4) Если ΔA1B1C1 – правильный (равносторонний), то центры вписанной и описанной окружностей совпадают и лежат в точке пересечения медиан. Поэтому построение изображения этого треугольника не может быть произвольным, если задан, например, центр одной из этих окружностей.
2. Изображение параллелограмма
Любой заданный параллелограмм A1B1C1D1 (включая прямоугольник, квадрат, ромб) может быть изображен произвольным параллелограммом ABCD.
На изображении произвольного параллелограмма изображения двух его высот, проведенных из одной вершины, можно построить произвольно. Причем высоты, проведенные из вершины острого угла параллелограмма – оригинала, лежат вне параллелограмма, а высоты, проведенные из вершины тупого угла – внутри него.
1) Если A1B1C1D1 – ромб, то на изображении определяется пара взаимно перпендикулярных прямых – это диагонали ABCD. Поэтому произвольно можно построить изображение только лишь одной высоты из данной вершины ромб на его сторону.
При изображении другой высоты ромба учитывают, что основания этих высот лежат на прямой, параллельной диагонали ромба.
Аналогично изображаются перпендикуляры, опущенные на стороны ромба из любой точки его диагонали.
2) Если A1B1C1D1 – квадрат, то его изображение – произвольный параллелограмм ABCD. Причем изображения высот, биссектрис, углов, перпендикуляров к сторонам строить произвольно нельзя.
3. Изображение трапеции
Любая трапеция A1B1C1D1 (а также равнобокая и прямоугольная) может быть изображена произвольной трапецией ABCD.
1) Если A1B1C1D1 — трапеция общего вида, то изображение ее высоты и одного из перпендикуляров, опущенных из точки основания на боковые стороны, можно строить произвольно.
2) Если A1B1C1D1 — прямоугольная трапеция, то C1B1 ⊥ A1B1, изображение высоты трапеции уже задано на рисунке, поэтому произвольно может быть изображен лишь перпендикуляр к наклонной боковой стороне.
3) Если A1B1C1D1 — равнобокая трапеция (есть ось симметрии), то изображением высоты является отрезок, соединяющий середины верхнего и нижнего оснований трапеции (или ему параллельный).
4. Изображение окружности
Параллельной проекцией окружности является эллипс. Центром окружности на изображении является точка пересечения сопряженных диаметров эллипса. Два диаметра окружности (эллипса) называются сопряженными , если каждый из них делит пополам все хорды, параллельные другому диаметру.
4. Изображение правильного шестиугольника
Правильный шестиугольник A1B1C1D1E1F1 изображается так: сначала изображается произвольный параллелограмм BCEF и проводятся его диагонали BE и CF; затем от точки их пересечения О откладываются равные отрезки произвольной длины (но большей половины стороны ВС) параллельно сторонам BC и EF. Концы построенных отрезков – это вершины A и D.
Итак, мы рассмотрели всевозможные варианты изображения плоских фигур на плоскости с использованием метода параллельного проектирования.
В следующей статье мы рассмотрим изображение пространственных фигур на плоскости.
Об авторе
Мое педагогическое кредо: "Чтобы быть хорошим преподавателем, нужно любить то, что преподаешь, и любить тех, кому преподаешь."
Урок 33. Подготовка к ЕГЭ по математике
Конспект урока "Параллельное проектирование. Изображение пространственных фигур"
В стереометрии большое значение имеет умение наглядно изображать неплоские фигуры на плоскости. Вы знаете, что когда в планиметрии на листе бумаги изображают плоскую фигуру, то все точки изображённой фигуры лежат на плоскости листа. В стереометрии же рассматриваются фигуры, у которых не все точки расположены в одной плоскости. Поэтому надо знать правила, по которым изображают на плоскости пространственные фигуры.
Итак, зачастую для изображения на плоскости (например, на листе бумаги) геометрических фигур, расположенных в пространстве, используется параллельное проектирование. Определяется оно следующим образом.
Пусть
Точка Плоскость
Все прямые, параллельные прямой
, задают одно и то же направление проектирования, поэтому также называются проектирующими прямыми.
Пусть
Вспомним основные свойства параллельного проектирования при условии, что проектируемые отрезки и прямые не параллельны прямой, задающей направление проектирования.
1. Проекция прямой есть прямая, а проекция отрезка — отрезок.
2. Проекции параллельных прямых параллельны или совпадают.
3. Отношение длин проекций отрезков, лежащих на одной прямой или на параллельных прямых, равно отношению длин самих отрезков.
Следствие. При параллельном проектировании середина отрезка проектируется в середину его проекции.
При параллельном проектировании могут искажаться размеры отрезков и углы, но обязательно сохраняется параллельность прямых.
Если точка делит отрезок в отношении
Центр правильного треугольника отображается в точку пересечения медиан проекции этого треугольника, центр квадрата — в точку пересечения диагоналей проекции квадрата.
А теперь давайте поговорим об изображении пространственных фигур.
Рассмотренные свойства параллельного проектирования применяются при выполнении рисунков (изображений фигур), иллюстрирующих теоремы и задачи стереометрии.
Изображением фигуры называется любая фигура, подобная проекции этой фигуры на некоторую плоскость.
Выполняя изображения фигур, расположенных в пространстве, необходимо учитывать свойства, сохраняющиеся при параллельном проектировании, а в остальном изображение может быть произвольным. Важно только, чтобы изображения рассматриваемых фигур были наглядными и давали верное представление о них.
При различном выборе плоскости проекций и направления проектирования получаются различные проекции данной фигуры, а значит, и различные её изображения.
Например, вы видите фигуры, которые являются изображениями куба.
Причём изображение куба, данное на первом рисунке, не даёт представления о кубе, наглядным является изображение, которое дано на последнем рисунке.
При построении изображений плоских фигур, расположенных в пространстве, предполагается, что плоскости рассматриваемых фигур не параллельны направлению проектирования.
Итак, проекцией треугольника может быть любой треугольник.
При этом величины углов и отношение длин непараллельных сторон не сохраняются, но при этом медианы треугольника отображаются в медианы его проекции. В частности, за изображение прямоугольного, равнобедренного, равностороннего треугольников можно принять любой треугольник.
Параллелограмм проектируется в параллелограмм, так как параллельные прямые сохраняют параллельность.
В частном случае за изображение прямоугольника, квадрата, ромба можно принять любой параллелограмм.
Трапеция проектируется в другую трапецию, но с сохранением параллельности оснований.
Правильный шестиугольник проектируется в искажённый шестиугольник с сохранением параллельности противолежащих сторон.
Окружность проектируется в эллипс, большая ось которого имеет длину, равную диаметру окружности.
При изображении пространственных фигур пользуются тем фактом, что фигуру, состоящую из сторон и диагоналей любого выпуклого или невыпуклого четырёхугольника, можно считать изображением треугольной пирамиды при определённом выборе направления проектирования и плоскости, на которую проектируется эта пирамида.
Например, фигуры, изображённые на экране, являются изображениями треугольной пирамиды при соответствующем выборе направления проектирования.
Изображение параллелепипеда строится, исходя из того, что все его грани параллелограммы и, следовательно, изображаются параллелограммами.
При изображении куба плоскость изображений обычно выбирается параллельной одной из его граней. В этом случае две грани куба, параллельные плоскости изображений (передняя и задняя), изображаются равными квадратами. Остальные грани куба изображаются параллелограммами.
Аналогичным образом изображается прямоугольный параллелепипед.
Для того чтобы построить изображение призмы, достаточно построить многоугольник, изображающий её основание. Затем из вершин многоугольника провести прямые, параллельные некоторой фиксированной прямой, и отложить на них равные отрезки. Соединяя концы этих отрезков, получим многоугольник, являющийся изображением второго основания призмы.
Для того чтобы построить изображение пирамиды, достаточно построить многоугольник, изображающий её основание. Затем выбрать какую-нибудь точку, которая будет изображать вершину пирамиды, и соединить её с вершинами многоугольника. Полученные отрезки будут изображать боковые рёбра пирамиды.
Для изображения цилиндра достаточно изобразить его основания в виде двух эллипсов, получающихся друг из друга параллельным переносом, и нарисовать две образующие, соединяющие соответствующие точки этих оснований.
Для изображения конуса достаточно изобразить его основание в виде эллипса, отметить вершину и провести через неё две образующие, являющиеся касательными к этому эллипсу.
Основные моменты мы с вами повторили, а теперь давайте перейдём к практической части занятия.
Задача первая. Точки
Задача вторая. На диагонали