No Image

Постройте интервальный ряд распределения пример

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Дискретный вариационный ряд строится для дискретный признаков.

Для того, чтобы построить дискретный вариационный ряд нужно выполнить следующие действия: 1) упорядочить единицы наблюдения по возрастанию изучаемого значения признака,

2) определить все возможные значения признака xi, упорядочить их по возрастанию,

3) подсчитать сколько раз встречается каждое значение признака в изучаемой совокупности, т.е. определить частоту каждого значения признака fi.

4) записать полученные данные в таблицу из двух строк (столбцов) – xi и fi .

Значение случайной величины, соответствующее отдельной группе наблюдаемых данных, называют значением признака, вариантом (вариантой) и обознпчают xi.

Число, которое показывает, сколько раз встречается соответствующее значение признака в ряде наблюдений называют частота значения признака и обозначают fi. Сумма всех частот ряда равна количеству элементов в изучаемой совокупности.

Список оценок полученных студентами на экзаменах: 3; 4; 3; 5; 4; 2; 2; 4; 4; 3; 5; 2; 4; 5; 4; 3; 4; 3; 3; 4; 4; 2; 2; 5; 5; 4; 5; 2; 3; 4; 4; 3; 4; 5; 2; 5; 5; 4; 3; 3; 4; 2; 4; 4; 5; 4; 3; 5; 3; 5; 4; 4; 5; 4; 4; 5; 4; 5; 5; 5.

Здесь число Х – оценка является дискретной случайной величиной, а полученный список оценок – статистические (наблюдаемые) данные.

упорядочить единицы наблюдения по возрастанию изучаемого значения признака:

2; 2; 2; 2; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5.

2) определить все возможные значения признака xi, упорядочить их по возрастанию:

В данном примере все оценки можно разделить на четыре группы со следующими значениями: 2; 3; 4; 5.

Значение случайной величины, соответствующее отдельной группе наблюдаемых данных, называют значением признака, вариантом (вариантой) и обознпчают xi.

3) подсчитать сколько раз встречается каждое значение признака в изучаемой совокупности, т.е. определить частоту каждого значения признака fi.

Число, которое показывает, сколько раз встречается соответствующее значение признака в ряде наблюдений называют частота значения признака и обозначают fi. Сумма всех частот ряда равна количеству элементов (единиц наблюдения) в изучаемой совокупности.

Читайте также:  Intel extreme memory profile xmp что это

Для нашего примера

оценка 2 встречается – 8 раз,

оценка 3 встречается – 12 раз,

оценка 4 встречается – 23 раза,

оценка 5 встречается – 17 раз.

Всего 60 оценок.

4) записать полученные данные в таблицу из двух строк (столбцов) – xi и fi .

На основании этих данных можно построить дискретный вариационный ряд

Дискретный вариационный ряд – это таблица, в которой указаны встречающиеся значения изучаемого признака как отдельные значения по возрастанию и их частоты

fi (кол-во студентов с такой оценкой)

Построение интервального вариационного ряда

Кроме дискретного вариационного ряда часто встречается такой способ группировки данных, как интервальный вариационный ряд.

Интервальный ряд строится если:

признак имеет непрерывный характер изменения;

дискретных значений получилось очень много (больше 10)

частоты дискретных значений очень малы (не превышают 1-3 при относительно большем количестве единиц наблюдения);

много дискретных значений признака с одинаковыми частотами.

Интервальный вариационный ряд – это способ группировки данных в виде таблицы, которая имеет две графы (значения признака в виде интервала значений и частота каждого интервала).

В отличие от дискретного ряда значения признака интервального ряда представлены не отдельными значениями, а интервалом значений («от – до»).

Число, которое показывает, сколько единиц наблюдения попало в каждый выделенный интервал, называется частота значения признака и обозначают fi. Сумма всех частот ряда равна количеству элементов (единиц наблюдения) в изучаемой совокупности.

Если единица обладает значением признака, равным величине верхней границы интервала, то ее следует относить к следующему интервалу.

Например, ребёнок с ростом 100 см попадёт во 2-ой интервал, а не в первый; а ребёнок с ростом 130 см попадёт в последний интервал, а не в третий.

На основании этих данных можно построить интервальный вариационный ряд.

fi (кол-во детей с таким ростом)

Интервальный ряд

Условие:

Имеются данные о возрастном составе рабочих (лет): 18, 38, 28, 29, 26, 38, 34, 22, 28, 30, 22, 23, 35, 33, 27, 24, 30, 32, 28, 25, 29, 26, 31, 24, 29, 27, 32, 25, 29, 29.

  1. Построить интервальный ряд распределения.
  2. Построить графическое изображение ряда.
  3. Графически определить моду и медиану.
Читайте также:  Половина экрана телевизора светлее

Решение:

1) По формуле Стерджесса совокупность надо разделить на 1 + 3,322 lg 30 = 6 групп.

Максимальный возраст – 38, минимальный – 18.

Ширина интервала Так как концы интервалов должны быть целыми числами, разделим совокупность на 5 групп. Ширина интервала – 4.

Для облегчения подсчетов расположим данные в порядке возрастания: 18, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 31, 32, 32, 33, 34, 35, 38, 38.

Распределение возрастного состава рабочих

Графически ряд можно изобразить в виде гистограммы или полигона. Гистограмма – столбиковая диаграмма. Основание столбика – ширина интервала. Высота столбика равна частоте.

Полигон (или многоугольник распределения) – график частот. Чтобы его построить по гистограмме, соединяем середины верхних сторон прямоугольников. Многоугольник замыкаем на оси Ох на расстояниях, равных половине интервала от крайних значений х.

Мода (Мо) – это величина изучаемого признака, которая в данной совокупности встречается наиболее часто.

Чтобы определить моду по гистограмме, надо выбрать самый высокий прямоугольник, провести линию от правой вершины этого прямоугольника к правому верхнему углу предыдущего прямоугольника, и от левой вершины модального прямоугольника провести линию к левой вершине последующего прямоугольника. От точки пересечения этих линий провести перпендикуляр к оси х. Абсцисса и будет модой. Мо ≈ 27,5. Значит, наиболее часто встречаемый возраст в данной совокупности 27-28 лет.

Медиана (Mе) – это величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда.

Медиану находим по кумуляте. Кумулята – график накопленных частот. Абсциссы – варианты ряда. Ординаты – накопленные частоты.

Для определения медианы по кумуляте находим по оси ординат точку, соответствующую 50% накопленных частот (в нашем случае 15), проводим через неё прямую, параллельно оси Ох, и от точки её пересечения с кумулятой проводим перпендикуляр к оси х. Абсцисса является медианой. Ме ≈ 25,9. Это означает, что половина рабочих в данной совокупности имеет возраст менее 26 лет.

Доказано – для экономистов работа с числами очень важный навык. Игоровой тренажер "Продолжи ряд" создан специально для работы с числами в уме. В начале обучения только 2 из 10 проходят тест без ошибок.

Признаки, изучаемые статистикой, варьируются (отличаются друг от друга) у различных единиц совокупности в один и тот же период или момент времени. Например, величина внешнеторгового оборота варьируется по подразделениям ФТС; величина экспорта (импорта) варьируется по направлениям экспорта (по разным странам-партнерам по внешней торговле), по видам товаров и т.п.

Читайте также:  Как понять что сгорела звуковая карта

Причиной вариации являются разные условия существования разных единиц совокупности. Например, огромное число причин влияет на масштабы внешней торговли различных стран мира.

Для управления и изучения вариации статистикой разработаны специальные методы исследования вариации, система показателей, с помощью которой вариация измеряется, характеризуются ее свойства.

Первым этапом статистического изучения вариации является построение ряда распределения (или вариационного ряда) – упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существует 3 вида ряда распределения:

1) ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака (например, таблица 11); если численность единиц совокупности достаточно велика ранжированный ряд становится громоздким, и в таких случаях ряд распределения строится с помощью группировки единиц совокупности по значениям изучаемого признака (ели признак принимает небольшое число значений, то строится дискретный ряд, а в противном случае – интервальный ряд);

2) дискретный ряд – это таблица, состоящая из двух столбцов (строк) – конкретных значений варьирующего признака Xi и числа единиц совокупности с данным значением признака fi – частот; число групп в дискретном ряду определяется числом реально существующих значений варьирующего признака;

3) интервальный ряд – это таблица, состоящая из двух столбцов (строк) – интервалов варьирующего признака Xi и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа в общей численности совокупностей (частостей).

Построим ряд распределения внешнеторгового оборота (ВО) по таможенным постам России, для чего необходимо провести статистическое наблюдение, то есть собрать первичный статистический материал, который представляет собой величину ВО по таможенным постам.

Результаты наблюдения ВО по 35 таможенным постам региона за отчетный период представим в виде ранжированного по возрастанию величины ВО ряда распределения (таблица 11).

Таблица 11. Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector