No Image

Скорости молекул азота 300 и 600

СОДЕРЖАНИЕ
2 просмотров
11 марта 2020

Условие задачи:

При некоторой температуре средняя скорость молекул азота равна 600 м/с. Какова средняя скорость молекул кислорода при той же температуре?

Задача №4.1.50 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

(upsilon_1=600) м/с, (T_1=T_2), (upsilon_2-?)

Решение задачи:

Среднюю квадратичную скорость молекул газа (upsilon), имеющего молярную массу (M), при температуре (T) можно определить по формуле:

Учитывая это, скорости молекул азота и кислорода можно найти по формулам:

Поделим нижнее равенство на верхнее, при этом учтем, что по условию (T_1=T_2):

В итоге получим такую окончательную формулу:

Молярная масса азота (N2) (M_1) равна 0,028 кг/моль, а кислорода (O2) (M_2) — 0,032 кг/моль. Посчитаем ответ:

Ответ: 2020,5 км/ч.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Найдите температуру азота, при которой скоростям молекул

v1=300 м/с и v2=600 м/с соответствуют одинаковые значения функции распределения.

Определите на какой высоте давление воздуха составляет 60% от давления на уровне моря. Считайте, что температура воздуха везде одинакова и равна 10 0 С.

Азот находится в очень высоком сосуде в однородном поле силы тяжести при температуре Т. Температуру увеличили в раз. Определите на какой высоте концентрация молекул осталась прежней.

1. Газ массой 16 г при давлении 1 МПа и температуре 112 0 С занимает объем 1,6 л. Определите, какой это газ.

2. Найдите массу 20 моль серной кислоты (H2SO4).

3. В закрытом сосуде находится газ под давлением 500 кПа. Какое давление установится в этом сосуде, если после открытия крана 4/5 массы газа выйдет наружу, а температура газа не изменится?

4. С определенной массой идеального газа проводят следующие процессы: 1)изобарное нагревание; 2) изотермическое расширение. Изобразите графики процессов в координатных осях (Р,V).

5. В сосуде вместимостью 1 л находится кислород массой 1 г. Определите концентрацию молекул кислорода в сосуде.

6. Определите температуру азота, имеющего массу 2 г, занимающего объем 830 см 3 при давлении 0,2 МПа.

7. Распределение молекул по скоростям в пучке, выходящем из небольшого отверстия в сосуде описывается функцией

F = Av 3 exp(-mv 2 / 2kT), где Т- температура газа внутри сосуда. Найдите наиболее вероятные значения: 1) скорости молекул в пучке; сравните полученную величину с наиболее вероятной скоростью молекул в самом сосуде; 2) кинетической энергии

молекул в пучке.

8. В очень высоком вертикальном цилиндрическом сосуде находится углекислый газ при некоторой температуре Т. Считая поле силы тяжести однородным, найдите как изменится давление газа на дно сосуда, если температуру гага увеличить в раз.

Читайте также:  Как настроить прием цифрового телевидения

9. Некоторое количество водорода находится при температуре 200 К и давлении 400 Па. Газ нагревают до температуры 10 4 К, при которой молекулы водорода полностью распадаются на атомы. Определите давление газа , если его объем и давление не изменились.

10. В колбе находится двухатомный газ. Под действием ультрафиолетового излучения распалось на атомы 12% молекул. При этом в колбе установилось давление 93 кПа. Найдите давление газа в недиссоциированном состоянии.

ЗАНЯТИЕ 7 Основы термодинамики

Дата добавления: 2014-11-25 ; Просмотров: 1472 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Тема. Решение задач по теме «Скорости газовых молекул. Распределение молекул по скоростям »

На примерах решения задач познакомить учащихся с основными типами задач и методами их решения.

Вспомните основные свойства модели идеального газа. Повторите понятие размера молекул и длины свободного пробега. Выведите формулу для длины свободного пробега. Покажите, что длина свободного пробега зависит от давления, под которым находится газ. Подсчитайте число молекул, находящихся в единице объема при нормальных условиях. Обсудите насколько велико это число.

1. Какие гипотезы положены в основу вывода основного уравнения молекулярно-кинетической теории газа?

2. Как правильно сформулировать вопрос о распределении молекул по скоростям?

3. Какой физический смысл имеет функция распределения молекул по скоростям?

4. Чему равна ограниченная кривой распределения молекул по скоростям площадь?

5. Как изменяются с температурой положение максимума кривой функции распределения молекул по скоростям и его высота?

Примеры решения задач

Задача 1. Найти среднюю длину свободного пробега молекул воздуха при нормальных условиях. Эффективный диаметр молекул принять равным м.

Средняя длина свободного пробега определяется формулой , где r – радиус молекулы. Так как d = 2r, то , где – число молекул в единице объема, Р – давление и Т – температура. Подставляя значение в формулу для длины свободного пробега, получим

м.

Ответ: м.

Задача 2. Найти среднюю длину свободного пробега атомов гелия в условиях, когда плотность гелия ρ = 2,1·10 –2 кг/м 3 , а эффективный диаметр атома гелия d = 1,9·10 –2 м.

Для определения средней длины свободного пробега необходимо знать концентрацию молекул n при данных условиях. Найдем n. Из уравнения Клапейрона–Менделеева следует, что

.

.

И для средней длины свободного пробега l получаем расчетную формулу

м.

Ответ: м.

Задача 3. Какое предельное число молекул азота может находиться в сферическом сосуде диаметром D = 1 см, чтобы молекулы не сталкивались друг с другом? Диаметр молекул азота d = 3,1·10 –10 м.

Для того чтобы столкновений молекул друг с другом не было, необходимо чтобы средняя длина свободного пробега λ была не меньше диаметра сосуда D, то есть λ ≥ D. Известно, что

Читайте также:  Как подключиться к чужому роутеру

,

где d – эффективный диаметр молекул азота, n – число молекул в единице объема, то есть концентрация молекул. Зная d, можно найти допустимую концентрацию молекул.

.

Максимальное число молекул в сосуде, объем которого , определится следующим образом

.

Ответ: .

Задача 4. Азот находится под давлением Па при температуре Т = 300 К. Найти относительное число молекул азота, скорости которых лежат в интервале скоростей, отличающихся от наиболее вероятной на Δv = 1 м/с.

Так как интервал скоростей Δv мал, то изменением функции распределения в этом интервале скоростей можно пренебречь, считая ее приближенно постоянной.

.

Подставляем значение наиболее вероятной скорости

;

.

Это и есть решение задачи. Производим вычисления: масса молекулы азота кг, постоянная Больцмана Дж/К. Подставляя численные значения, получим

.

При подсчете необходимо учесть, что определяется относительное число молекул, отличающихся по скорости от наиболее вероятной в обе стороны, то есть интервал равен Δv = 2 м/с.

Ответ: .

Задача 5. Найти температуру газообразного азота, при которой скоростям молекул v1 = 300 м/с и v2 = 600 м/с соответствуют одинаковые значения функции распределения Максвелла молекул по скоростям.

Запишем функцию распределения для указанных скоростей. По условию задачи значения функции должны быть одинаковы.

;

;

;

;

.

Масса молекулы азота кг.

Постоянная Больцмана Дж/К.

К.

Ответ: = 300 К.

Задача 6. Найти отношение средних квадратичных скоростей молекул гелия и азота при одинаковых температурах.

Воспользуемся формулой для определения средней квадратичной скорости

,

где – молярная масса газа. Тогда отношение средних квадратичных скоростей молекул гелия и азота при одинаковых температурах будет равно

,

где– молярная масса неона, – молярная масса гелия. Подставляя численные значения, получим

Ответ: .

Задача 7. Определить: 1) число молекул в 1 мм 3 воды, 2) массу молекулы воды, 3) диаметр молекулы воды, считая условно, что молекулы воды шарообразны и соприкасаются.

Число молекул, содержащихся в массе вещества равно числу Авогадро , умноженному на число молей (– молярная масса вещества)

,

где r – плотность, V – объем вещества. После подстановки числовых значений получим

.

Массу m1 одной молекулы можно определить, разделив массу одного моля на число Авогадро:

кг.

Считая, что молекулы соприкасаются, объем, занимаемый одной молекулой , где d – диаметр молекулы. Отсюда . Так как , где – объем одного моля, то

м.

Ответ: ; кг; м.

Задача 8. Зная, что диаметр молекулы кислорода d = 3·10 –10 м подсчитать, какой длины S получилась бы цепочка из молекул кислорода, находящихся в объеме V = 2 см 2 при давлении Р = 1,01·10 5 Н/м 2 и температуре Т = 300 К, если эти молекулы расположить вплотную в один ряд. Сравнить длину этой цепочки со средним расстоянием от Земли до Луны м.

Читайте также:  Windows 7 10pe x86x64 efi universal

Число молекул кислорода, содержащихся в единице объема, согласно основному уравнению молекулярно-кинетической теории, равно

,

Число молекул в объеме V будет равно . Следовательно, м.

Тогда .

Ответ: м; раз.

Задача 9. Средняя квадратичная скорость молекул некоторого газа vc.к. = 450 м/с. Давление газа р = 7 · 10 4 Н/м 2 . Найти плотность газа ρ при этих условиях.

Из уравнения Клайперона–Менделеева следует: . Учитывая, что , получаем .

Ответ: .

Задания для самостоятельной работы

1. В опыте Штерна источник атомов серебра создает пучок, который падает на внутреннюю поверхность неподвижного цилиндра радиуса R = 30 см и образует на ней пятно. Цилиндр начинает вращаться с угловой скоростью ω = 100 рад/с. Определить скорость атомов серебра, если пятно отклонилось на угол φ = 0,314 рад от первоначального положения.

Ответ: м/с.

2. Сколько молекул газа содержится в баллоне емкостью V = 60 л при температуре Т = 300 К и давлении P= 5·10 3 Н/м 2 ?

Ответ: .

3. Определить температуру газа, для которой средняя квадратичная скорость молекул водорода больше их наиболее вероятной скорости на Δv = 400 м/с. Масса молекулы водорода т = 3,35·10 –27 кг.

Ответ: = 380 К.

4. Вычислить среднее расстояние между центрами молекул идеального газа при нормальных условиях.

Ответ: м.

5. В помещении площадью S = 100 м 2 и высотой h = 4 м разлито V1 = 1 л ацетона (СН3)2СО. Сколько молекул ацетона содержится в 1 м 3 воздуха, если весь ацетон испарился? Плотность r ацетона 792 кг/м 3 .

Ответ:

6. Найти число столкновений z, которые произойдут за 1 с в 1 см 3 кислорода при нормальных условиях. Эффективный радиус молекулы кислорода принять равным
1,5·10 –10 м.

Ответ: .

7. Найти среднюю длину свободного пробега молекул азота при давлении P = 133 Па и температуре t = 27°C.

Ответ: м.

8. Доказать, что средняя арифметическая и средняя квадратичная скорости молекул газа пропорциональны , где P – давление газа; ρ – плотность газа.

Ответ: .

9. Два одинаковых сосуда, содержащие одинаковое число молекул кислорода, соединены краном. В первом сосуде средняя квадратичная скорость молекул равна , во втором – . Какой будет эта скорость, если открыть кран, соединяющий сосуды (теплообмен с окружающей средой отсутствует)?

Ответ: .

1. Бутиков Е.И., Кондратьев А.С. Физика. Т.3. Строение и свойства вещества – Москва – Санкт-Петербург. Физматлит. Невский диалект. Лаборатория Базовых Знаний, 2001. С. 170-194.

2. Белолипецкий С.Н., Еркович О.С., Казаковцева В.А., Цвецинская Т.С. Задачник по физике – Москва. Физматлит, 2005.

3. Готовцев В.В. Лучшие задачи по механике и термодинамике. Москва-Ростов-на-Дону, Издательский центр «Март», 2004. С. 215-219.

Комментировать
2 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector