No Image

Составить сумму и разность

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Что такое сумма, и как ее найти

Сумма – это результат складывания двух чисел (слагаемых), между которыми стоит знак +. Чтобы получить сумму, нужно к одному слагаемому прибавить второе слагаемое. В общем виде пример можно показать так: a + b = s, где а – первое слагаемое, b – второе слагаемое, а s – результат сложения этих двух слагаемых. При этом нужно знать, что от перестановки слагаемых сумма не меняется, – это одно из самых первых правил в математике, которое проходят в начальной школе.

Чтобы наглядно показать ребенку, как сложить числа, возьмите конфеты или любые другие вещи. Покажите ребенку две конфеты, а затем прибавьте к этим конфетам еще две. Пусть ребенок посчитает и скажет, что теперь конфет оказалось четыре. Объясните ему, что он только что сложил эти числа, то есть прибавил к одному числу другое число и в конечном итоге получил сумму.

Немного сложнее объяснить сложение разрядных слагаемых, эта тема может быть непонятна ребенку. Итак, существует множество разрядов: единицы, десятки, тысячи. Возьмите, к примеру, число 2564. Если разложить его на разряды, то получится: 2564 = 2000 + 500 + 60 + 4. Чтобы прибавить к этому числу, например, число 305, воспользуйтесь сложением в столбик. При таком сложении нужно прибавлять одни разряды к другим, начиная с конца: единицы к единицам, десятки к десяткам, тысячи к тысячам. То есть, для начала складываем 4 и 5, затем 6 и 0, после 5 и 3, и в конце 2 и 0. В конечном итоге получаем число 2869.

Как найти разность чисел

Разность – результат вычитания одного числа из другого. В отличие от суммы, здесь мы не можем воспользоваться правилом "от перестановки слагаемых разность не меняется", так как в вычитании всегда есть уменьшаемое и вычитаемое. Чтобы найти вычитаемое и разность, для начала нужно разобраться с этими понятиями. Уменьшаемое – это то, из чего мы "вычитаем", то есть убираем, а вычитаемое – количество того, что мы у этого уменьшаемого вернем.

В общем виде вычитание можно записать так: a – b = r.
Обратимся к тем же конфетам, с которыми мы разбирали сумму чисел. Чтобы помочь ребенку найти разность чисел, возьмите пять конфет. Пусть ребенок посчитает и убедится, что их пять. Затем заберите себе три конфеты. Ребенок скажет, что их осталось две. А сколько тогда забрали? Три.

Читайте также:  Lg 42lb650v зависает на заставке

А что касается разрядных слагаемых, то здесь мы делаем то же самое, что и с суммой, только теперь не прибавляем, а вычитаем. Возьмем число 6845 и вычтем из него 4231. Для этого мы вычитаем один разряд из другого разряда, производя вычитание с конца: 5-1 = 4, 4-3 = 1, 8-2 = 6, 6-4 = 2. В ответе получим 2614.шаблоны для dle 11.2

Данная статья разбирает такие действия с многочленами как сложение и вычитание многочленов. Сформулируем правило и рассмотрим его применение в решении задач.

Правило сложения и вычитания многочленов

Формулировку правила мы зададим сразу, после чего запишем пояснения.

Для осуществления действия сложения или вычитания многочленов, необходимо:

  • записать сумму или разность многочленов в зависимости от поставленной задачи;
  • в записанном выражении произвести раскрытие скобок, результатом чего станет многочлен;
  • привести полученный во втором шаге многочлен в стандартный вид.

Теперь дадим пояснения по каждому шагу озвученного алгоритма.

Чтобы записать сумму или разность многочленов, необходимо заданные многочлены заключить в скобки и между ними расположить знак плюс или минус соответственно. К примеру, сумма двух многочленов x 3 + 9 · x · y – 2 и 7 − 4 · x · y запишется как ( x 3 + 9 · x · y – 2 ) + ( 7 − 4 · x · y ) , а их разность имеет вид ( x 3 + 9 · x · y – 2 ) − ( 7 − 4 · x · y ) .

Далее, согласно правилу, необходимо раскрыть скобки в полученном выражении: данное действие совершаем, опираясь на правило раскрытия скобок, перед которыми расположен знак плюси правило раскрытия скобок, перед которыми расположен знак минус. В приведенных выше примерах сумма многочленов ( x 3 + 9 · x · y – 2 ) + ( 7 − 4 · x · y ) после раскрытия скобок получит вид x 3 + 9 · x · y – 2 + 7 − 4 · x · y , а разность ( x 3 + 9 · x · y – 2 ) − ( 7 − 4 · x · y ) станет выглядеть так: x 3 + 9 · x · y – 2 − 7 + 4 · x · y . Мы явно видим, что в итоге получены многочлены.

Последним шагом алгоритма приведем многочлен к стандартному виду. Продолжая рассматриваемые примеры, получим: x 3 + 9 · x · y – 2 + 7 − 4 · x · y = x 3 + 5 · x · y + 5 и x 3 + 9 · x · y – 2 − 7 + 4 · x · y = x 3 + 13 · x · y – 9 .

Мы рассмотрели все действия согласно сформулированному правилу и можем указать важный вывод, что итогом сложения или вычитания является многочлен.

Примеры сложения и вычитания

Разберем типичные задачи на сложение и вычитание многочленов.

Заданы многочлены x 2 + 5 · x + 2 и x 2 − 5 · x + 3 . Необходимо найти их сумму и разность.

Читайте также:  Как найти в беседе сообщение

Решение

Первым действием найдем сумму исходных многочленов. Запишем ее: ( x 2 + 5 · x + 2 ) + ( x 2 − 5 · x + 3 ) . Раскроем скобки и получим: x 2 + 5 · x + 2 + x 2 − 5 · x + 3 . Чтобы привести полученный многочлен к стандартному виду, совершим действие приведения подобных членов: 2 · x 2 + 5 .

Кратко решение оформляется так:

( x 2 + 5 · x + 2 ) + ( x 2 − 5 · x + 3 ) = x 2 + 5 · x + 2 + x 2 − 5 · x + 3 = = ( x 2 + x 2 ) + ( 5 · x − 5 · x ) + ( 2 + 3 ) = 2 · x 2 + 5

Произведем вычитание многочленов:

( x 2 + 5 · x + 2 ) − ( x 2 − 5 · x + 3 ) = x 2 + 5 · x + 2 − x 2 + 5 · x − 3 = = ( x 2 − x 2 ) + ( 5 · x + 5 · x ) + ( 2 − 3 ) = 10 · x − 1

Ответ: ( x 2 + 5 · x + 2 ) + ( x 2 − 5 · x + 3 ) = 2 · x 2 + 5 и ( x 2 + 5 · x + 2 ) − ( x 2 − 5 · x + 3 ) = 10 · x − 1 .

Одночлен – частный случай многочлена, поэтому правило сложения и вычитания, рассматриваемое в данной статье, применимо и для сложения и вычитания одночленов; для сложения и вычитания одночлена и многочлена и, наконец, для вычитания одночлена из многочлена и наоборот.

Необходимо вычесть из одночлена 17 · a · b 2 многочлен b 4 + b 3 + 11 · a · b 2 − 2 .

Решение

Сделаем запись разности ( 17 · a · b 2 ) − ( b 4 + b 3 + 11 · a · b 2 − 2 ) . Раскроем скобки и получим многочлен вида: 17 · a · b 2 − b 4 − b 3 − 11 · a · b 2 + 2 . Далее приводим многочлен к стандартному виду путем приведения подобных членов: 6 · a · b 2 − b 4 − b 3 + 2 , что и будет являться разностью исходных данных.

Ответ: ( 15 · a · b 2 ) − ( b 4 + b 3 + 11 · a · b 2 − 7 ) = 6 · a · b 2 − b 4 − b 3 + 2 .

Исходные многочлены могут быть представлены как в стандартном, так и в нестандартном виде: действия сложения и вычитания могут совершаться и в том, и в том состоянии данных, на результат вычисления это никоим образом не повлияет. Единственное, чем могут отличаться результаты, полученные от сложения или вычитания многочленов нестандартного вида и многочленов в стандартном виде – это порядок следования членов многочлена-результата сложения или вычитания.

Заданы многочлены 5 + 3 · a · 2 + 4 и a 2 − 2 · a + 2 · a 2 + 6 . Необходимо найти их сумму.

Решение

Решим задачу двумя способами.

  1. Осуществим сложение многочленов в исходном виде: ( 5 + 3 · a · 2 + 4 ) + ( a 2 − 2 · a + 2 · a 2 + 6 ) = = 5 + 3 · a · 2 + 4 + a 2 − 2 · a + 2 · a 2 + 6 = 5 + 6 · a + 4 + a 2 − 2 · a + 2 · a 2 + 6 = = ( 5 + 4 + 6 ) + ( 6 · a − 2 · a ) + ( a 2 + 2 · a 2 ) = 15 + 4 · a + 3 · a 2
  2. Первоначально запишем исходные многочлены в стандартном виде: 5 + 3 · a · 2 + 4 = 1 + 6 · a + 4 = ( 5 + 4 ) + 6 · a = 9 + 6 · a и a 2 − 2 · a + 2 · a 2 + 6 = ( a 2 + 2 · a 2 ) − 2 · a + 6 = 3 · a 2 − 2 · a + 6 .

Теперь произведём сложение:

( 9 + 6 · a ) + ( 3 · a 2 − 2 · a + 6 ) = 9 + 6 · a + 3 · a 2 − 2 · a + 6 = = ( 9 + 6 ) + ( 6 · a − 2 · a ) + 3 · a 2 = 15 + 4 · a + 3 · a 2

Читайте также:  Как найти потерянный телефон леново

Явно видно, что оба способа дали один и тот же итог.

Ответ: ( 5 + 3 · a · 2 + 4 ) + ( a 2 − 2 · a + 2 · a 2 + 6 ) = 15 + 4 · a + 3 · a 2 .

По такой же схеме, как во всех указанных примерах, производится сложение или вычитание трех и более многочленов.

Заданы многочлены: 5 · a · b − a · b 2 , 3 · a · b 2 и 2 · a · b 2 − a · b + b . Необходимо выполнить их сложение.

Решение

Осуществляем действия сложения согласно сформулированному выше правилу. Составляем сумму, затем раскрываем скобки и преобразуем полученный многочлен в стандартный вид:

( 5 · a · b − a · b 2 ) + ( 3 · a · b 2 ) + ( 2 · a · b 2 − a · b + b ) = = 5 · a · b − a · b 2 + 3 · a · b 2 + 2 · a · b 2 − a · b + b = 4 · a · b + 4 · a · b 2 + b

Ответ: ( 5 · a · b − a · b 2 ) + ( 3 · a · b 2 ) + ( 2 · a · b 2 − a · b + b ) = 4 · a · b + 4 · a · b 2 + b .

Составьте сумму и разность многочленов и приведите их к стандартному виду:
1) а) 7х 2 – 5х + 3 и 7х 2 – 5;
б) 3х + 1 и -3х 2 – 3х + 1;
в) а + 3b и 3а – 3b;
г) a 2 – 5ab – b 2 и а 2 + b 2 ;

2) а) 2у 2 + 8у – 11 и 3у 2 – 6у + 3;
б) 9a 3 – a – 3 и 9a 2 + a – 4;
в) 4m 4 + 4m 2 – 13 и 4m 4 – 4m 2 + 13;
г) 2p 2 + 3pq + 8q 2 и 6p 2 – pq – 8q 2 .

1. a) 7x 2 — 5х +3 + 7х 2 — 5 = 14x 2 — 5х — 2;
7x 2 — 5х + 3 — 7х 2 + 5 = -5х + 8;
б.) 3x + 1 — 3x 2 — 3х + 1 = —3x 2 + 2; 3x + 1 + 3х 2 + 3x — 1 = 3х 2 + 6х;
в) a + 3b + 3а — 3b = 4а; а + 3b — 3а + 3b = —2а + 6b;
г) а6 2 — 5аb — b 2 + а 2 + b 2 = 2а 2 — 5аb; а 2 — 5аb + b 2 — а 2 — b 2 = —5аb — 2b 2 ;

2. а)2у 2 + 8у — 11 + 3у 2 — 6у + 3 = 5у 2 + 2у —8; 2у 2 + 8y — 11 — 3у 2 + 6у — 3 = —у 2 + 14у —14;
б) 9а 3 — а — 3 + 9а 2 + а — 4 = 9а 3 + 9а 2 — 7; 9а 3 —а — 3 — 9а 2 — а + 4 = 9а 3 — 9а 2 — 2а + 1;
в) 4m 4 + 4m 2 —13 +4m 4 — 4m 2 + 13 = 8m 4 ; 4m 4 + 4m 2 + 13 — 4m 4 + 4m 2 — 13 = 8m 2 — 26;
г) 2 2 + 3pq + 8q 2 + 6p 2 —pq — 8q 2 = 8p 2 + 2pq; 2 2 + 3pq + 6q 2 — 6 p 2 +pq + 8q 2 = —4p 2 + 4pq + 16q 2 .

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector