No Image

Сравнение чисел с периодом

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

‘);> //–>
Сравнение чисел – это математическая операция определения большего числа из двух представленных.

2 > 1 (число 2 больше числа 1)

3 = 3 (число 3 равно числу 3)

4
С помощью этого онлайн калькулятора сравнения чисел вы в один клик сможете сравнить два числа.

В данной теме будет рассмотрена как общая схема сравнения десятичных дробей, так и детальный разбор принципа сравнения конечных и бесконечных дробей. Теоретическую часть закрепим решением типичных задач. Также разберем на примерах сравнение десятичных дробей с натуральными или смешанными числами, и обыкновенными дробями.

Внесем уточнение: в теории ниже будет рассмотрено сравнение только положительных десятичных дробей.

Общий принцип сравнения десятичных дробей

Для каждой конечной десятичной и бесконечной периодической десятичной дробей существуют соответствующие им некоторые обыкновенные дроби. Следовательно, сравнение конечных и бесконечных периодических дробей возможно производить как сравнение соответствующих им обыкновенных дробей. Собственно, это утверждение и является общим принципом сравнения десятичных периодических дробей.

На основе общего принципа формулируются правила сравнения десятичных дробей, придерживаясь которых возможно не осуществлять перевод сравниваемых десятичных дробей в обыкновенные.

То же самое можно сказать и про случаи, когда происходит сравнение десятичной периодической дроби с натуральными числами или смешанными числами, обыкновенными дробями – заданные числа необходимо заменить соответствующими им обыкновенными дробями.

Если же речь идет о сравнении бесконечных непериодических дробей, то его обычно сводят к сравнению конечных десятичных дробей. Для рассмотрения берется такое количество знаков сравниваемых бесконечных непериодических десятичных дробей, которое даст возможность получить результат сравнения.

Равные и неравные десятичные дроби

Равные десятичные дроби – это две конечные десятичные дроби, у которых равны соответствующие им обыкновенные дроби. В противном случае десятичные дроби являются неравными.

Опираясь на данное определение, просто обосновать такое утверждение: если в конце заданной десятичной дроби подписать или, наоборот, отбросить несколько цифр 0 , то получится равная ей десятичная дробь. К примеру: 0 , 5 = 0 , 50 = 0 , 500 = … . Или: 130 , 000 = 130 , 00 = 130 , 0 = 130 . По сути, дописать или отбросить нуль в конце дроби справа – значит умножить или разделить на 10 числитель и знаменатель соответствующей обыкновенной дроби. Добавим к сказанному основное свойство дробей (умножая или деля числитель и знаменатель дроби на одно и то же натуральное число, получаем дробь, равную исходной) и имеем доказательство вышеуказанного утверждения.

К примеру, десятичной дроби 0 , 7 соответствует обыкновенная дробь 7 10 . Дописав нуль справа, получим десятичную дробь 0 , 70 , которой соответствует обыкновенная дробь 70 100 , 7 · 70 100 : 10 . Т.е.: 0 , 7 = 0 , 70 . И наоборот: отбрасывая в десятичной дроби 0 , 70 нуль справа, получаем дробь 0 , 7 – таким образом, от десятичной дроби 70 100 мы переходим к дроби 7 10 , но 7 10 = 70 : 10 100 : 10 Тогда: 0 , 70 = 0 , 7 .

Теперь рассмотрим содержание понятия равных и неравных бесконечных периодических десятичных дробей.

Равные бесконечные периодические дроби – это бесконечные периодические дроби, у которых равны отвечающие им обыкновенные дроби. Если же соответствующие им обыкновенные дроби не равны, то заданные для сравнения периодические дроби также являются неравными.

Данное определение позволяет сделать следующие выводы:

– если записи заданных периодических десятичных дробей совпадают, то такие дроби являются равными. К примеру, периодические десятичные дроби 0 , 21 ( 5423 ) и 0 , 21 ( 5423 ) равны;

– если в заданных десятичных периодических дробях периоды начинаются с одной и той же позиции, первая дробь имеет период 0 , а вторая – 9 ; значение разряда, предшествующего периоду 0 , на единицу больше, чем значение разряда, предшествующего периоду 9 , то такие бесконечные периодические десятичные дроби равны. К примеру, равными являются периодические дроби 91 , 3 ( 0 ) и 91 , 2 ( 9 ) , а также дроби: 135 , ( 0 ) и 134 , ( 9 ) ;

– две любые другие периодические дроби не являются равными. Например: 8 , 0 ( 3 ) и 6 , ( 32 ) ; 0 , ( 42 ) и 0 , ( 131 ) и т.д.

Осталось рассмотреть равные и неравные бесконечные непериодические десятичные дроби. Такие дроби представляют из себя иррациональные числа, и их невозможно перевести в обыкновенные дроби. Следовательно, сравнение бесконечных непериодических десятичных дробей не сводится к сравнению обыкновенных.

Равные бесконечные непериодические десятичные дроби – это непериодические десятичные дроби, записи которых полностью совпадают.

Логичным будет вопрос: как сравнить записи, если увидеть «законченную» запись таких дробей невозможно? Сравнивая бесконечные непериодические десятичные дроби, нужно рассматривать только некоторое конечное число знаков заданных для сравнения дробей так, чтобы это позволило сделать вывод. Т.е. по сути сравнение бесконечных непериодических десятичных дробей заключается в сравнении конечных десятичных дробей.

Такой подход дает возможность утверждать о равенстве бесконечных непериодических дробей только с точностью до рассматриваемого разряда. Например, дроби 6 , 73451 … и 6 , 73451 … равны с точностью до стотысячных, т.к. равными являются конечные десятичные дроби 6 , 73451 и 6 , 7345 . Дроби 20 , 47 … и 20 , 47 … равны с точностью до сотых, т.к. равными являются дроби 20 , 47 и 20 , 47 и так далее.

Неравенство бесконечных непериодических дробей устанавливается вполне конкретно при явных различиях в записях. Например, неравными являются дроби 6 , 4135 … и 6 , 4176 … или 4 , 9824 … и 7 , 1132 … и так далее.

Правила сравнения десятичных дробей. Решение примеров

Если установлен факт неравенства двух десятичных дробей, обычно также необходимо определить, какая из них больше, а какая – меньше. Рассмотрим правила сравнения десятичных дробей, которые дают возможность решить вышеуказанную задачу.

Очень часто достаточно лишь сравнить целые части заданных к сравнению десятичных дробей.

Та десятичная дробь, у которой целая часть больше, является бОльшей. Меньшей является та дробь, у которой целая часть меньше.

Читайте также:  Logitech touch mouse m600 black usb

Указанное правило распространяется как на конечные десятичные дроби, так и на бесконечные.

Необходимо сравнить десятичные дроби: 7 , 54 и 3 , 97823 … .

Решение

Совершенно очевидно, что заданные десятичные дроби равными не являются. Целые их части равны соответственно: 7 и 3 . Т.к. 7 > 3 , то 7 , 54 > 3 , 97823 … .

Ответ: 7 , 54 > 3 , 97823 … .

В случае, когда целые части заданных к сравнению дробей равны, решение задачи сводится к сравнению дробных частей. Сравнение дробных частей производится поразрядно – от разряда десятых к более младшим.

Рассмотрим сначала случай, когда нужно сравнить конечные десятичные дроби.

Необходимо выполнить сравнение конечных десятичных дробей 0 , 65 и 0 , 6411 .

Решение

Очевидно, что целые части заданных дробей равны ( 0 = 0 ) . Проведем сравнение дробных частей: в разряде десятых значения равны ( 6 = 6 ) , а вот в разряде сотых значение дроби 0 , 65 больше, чем значение разряда сотых в дроби 0 , 6411 ( 5 > 4 ) . Таким образом, 0 , 65 > 0 , 6411 .

Ответ: 0 , 65 > 0 , 6411 .

В некоторых задачах на сравнение конечных десятичных дробей с разным количеством знаков после запятой необходимо к дроби с меньшим количеством десятичных знаков приписывать нужное количество нулей справа. Удобно уравнивать таким образом количество десятичных знаков в заданных дробях еще до начала сравнения.

Необходимо сравнить конечные десятичные дроби 67 , 0205 и 67 , 020542 .

Решение

Данные дроби очевидно не являются равными, т.к. записи их различны. При этом их целые части равны: 67 = 67 . Прежде чем приступить к поразрядному сравнению дробных частей заданных дробей, уравняем количество знаков после запятой, дописав нули справа в дроби с меньшим количеством знаков. Тогда получим для сравнения дроби: 67 , 020500 и 67 , 020542 . Проводим поразрядное сравнение и видим, что в разряде стотысячных значение в дроби 67 , 020542 больше, чем соответствующее в дроби 67 , 020500 ( 4 > 0 ) . Таким образом, 67 , 020500 67 , 020542 , а значит 67 , 0205 67 , 020542 .

Ответ: 67 , 0205 67 , 020542 .

Если необходимо сравнить конечную десятичную дробь с бесконечной, то конечная дробь заменяется бесконечной, ей равной с периодом 0 . Затем производится поразрядное сравнение.

Необходимо сравнить конечную десятичную дробь 6 , 24 с бесконечной непериодической десятичной дробью 6 , 240012 …

Решение

Мы видим, что целые части заданных дробей равны ( 6 = 6 ) . В разрядах десятых и сотых значения обеих дробей также являются равными. Чтобы иметь возможность сделать вывод, продолжаем сравнение, заменяя конечную десятичную дробь равной ей бесконечной с периодом 0 и получаем: 6 , 240000 … . Дойдя до пятого знака после запятой, находим различие: 0 1 , а значит: 6 , 240000 … 6 , 240012 … . Тогда: 6 , 24 6 , 240012 … .

Ответ: 6 , 24 6 , 240012 … .

Сравнивая бесконечные десятичные дроби, также применяют поразрядное сравнение, которое окончится тогда, когда значения в каком-то разряде у заданных дробей окажутся различными.

Необходимо сравнить бесконечные десятичные дроби 7 , 41 ( 15 ) и 7 , 42172 … .

Решение

В заданных дробях – равные целые части, значения десятых также равны, а вот в разряде сотых мы видим различие: 1 2 . Тогда: 7 , 41 ( 15 ) 7 , 42172 … .

Ответ: 7 , 41 ( 15 ) 7 , 42172 … .

Необходимо сравнить бесконечные периодические дроби 4 , ( 13 ) и 4 , ( 131 ) .

Решение:

Понятными и верными являются равенства: 4 , ( 13 ) = 4 , 131313 … и 4 , ( 133 ) = 4 , 131131 … . Сравниваем целые части и поразрядно дробные, и на четвертом знаке после запятой фиксируем расхождение: 3 > 1 . Тогда: 4 , 131313 … > 4 , 131131 … , а 4 , ( 13 ) > 4 , ( 131 ) .

Ответ: 4 , ( 13 ) > 4 , ( 131 ) .

Сравнение десятичных дробей с натуральными числами, обыкновенными дробями и смешанными числами

Чтобы получить результат сравнения десятичной дроби с натуральным числом, необходимо сравнить целую часть заданной дроби с заданным натуральным числом. При этом надо учесть, что периодические дроби с периодами 0 или 9 нужно предварительно представить в виде равных им конечных десятичных дробей.

Если целая часть заданной десятичной дроби меньше заданного натурального числа, то и вся дробь является меньшей по отношению к заданному натуральному числу. Если целая часть заданной дроби больше или равна заданному натуральному числу, то дробь больше заданного натурального числа.

Необходимо сравнить натуральное число 8 и десятичную дробь 9 , 3142 … .

Решение:

Заданное натуральное число меньше, чем целая часть заданной десятичной дроби ( 8 9 ) , а значит это число меньше заданной десятичной дроби.

Ответ: 8 9 , 3142 … .

Необходимо сравнить натуральное число 5 и десятичную дробь 5 , 6 .

Решение

Целая часть заданной дроби равна заданному натуральному числу, тогда, согласно вышеуказанному правилу, 5 5 , 6 .

Ответ: 5 5 , 6 .

Необходимо сравнить натуральное число 4 и периодическую десятичную дробь 3 , ( 9 ) .

Решение

Период заданной десятичной дроби равен 9 , а значит перед сравнением необходимо заменить заданную десятичную дробь равной ей конечной или натуральным числом. В данном случае: 3 , ( 9 ) = 4 . Таким, образом исходные данные равны.

Чтобы произвести сравнение десятичной дроби с обыкновенной дробью или смешанным числом, необходимо:

– записать обыкновенную дробь или смешанное число в виде десятичной дроби, а затем выполнить сравнение десятичных дробей или
– записать десятичную дробь в виде обыкновенной дроби (за исключением бесконечной непериодической), а затем выполнить сравнение с заданной обыкновенной дробью или смешанным числом.

Необходимо сравнить десятичную дробь 0 , 34 и обыкновенную дробь 1 3 .

Решение

Решим задачу двумя способами.

  1. Запишем заданную обыкновенную дробь 1 3 в виде равной ей периодической десятичной дроби: 0 , 33333 … . Тогда становится необходимым произвести сравнение десятичных дробей 0 , 34 и 0 , 33333 … . Получим: 0 , 34 > 0 , 33333 … , а значит 0 , 34 > 1 3 .
  2. Запишем заданную десятичную дробь 0 , 34 в виде равной ей обыкновенной. Т.е.: 0 , 34 = 34 100 = 17 50 . Сравним обыкновенные дроби с разными знаменателями и получим: 17 50 > 1 3 . Таким образом, 0 , 34 > 1 3 .
Читайте также:  3D моделирование с чего начать

Ответ: 0 , 34 > 1 3 .

Необходимо сравнить бесконечную непериодическую десятичную дробь 4 , 5693 … и смешанное число 4 3 8 .

Решение

Бесконечную непериодическую десятичную дробь нельзя представить в виде смешанного числа, но возможно перевести смешанное число в неправильную дробь, а ее, в свою очередь, записать в виде равной ей десятичной дроби. Тогда: 4 3 8 = 35 8 и

Т.е.: 4 3 8 = 35 8 = 4 , 375 . Проведем сравнение десятичных дробей: 4 , 5693 … и 4 , 375 ( 4 , 5693 … > 4 , 375 ) и получим: 4 , 5693 … > 4 3 8 .

Ответ: 4 , 5693 … > 4 3 8 .

Существуют дроби, у которых в дробной части некоторые цифры бесконечно повторяются. Выглядят эти дроби следующим образом:

Дроби такого вида называют периодическими. В данном уроке мы попробуем разобраться, что это за дроби и как с ними работать.

Получаем периодическую дробь

Попробуем разделить 1 на 3. Не будем подробно останавливаться на том, как это сделать. Этот момент подробно описан в уроке действия с десятичными дробями, в теме деление меньшего числа на большее. Продвинутый уровень.

Итак, делим 1 на 3

Видно, что мы постоянно получаем остаток 1, далее приписываем к нему 0 и делим 10 на 3. И это повторяется вновь и вновь. В результате в дробной части каждый раз получается цифра 3. Деление 1 на 3 будет выполняться бесконечно, поэтому разýмнее будет остановиться на достигнутом.

Такие дроби называют периодическими, поскольку у них присутствует период цифр, который бесконечно повторяется. Период цифр может состоять из нескольких цифр, а может состоять из одной как в нашем примере.

В примере, который мы рассмотрели выше, период в дроби 0,33333 это цифра 3. Обычно такие дроби записывают сокращённо. Сначала записывают цéлую часть, затем ставят запятую и в скобках указывают период (цифру, которая повторяется).

В нашем примере повторяется цифра 3, она является периодом в дроби 0,33333. Поэтому сокращённая запись будет выглядеть так:

Читается как «ноль целых и три в периоде»

Пример 2. Разделить 5 на 11

Это тоже периодическая дробь. Период данной дроби это цифры 4 и 5, эти цифры повторяются бесконечно. Сокращённая запись будет выглядеть так:

Читается как «ноль целых и сорок пять в периоде»

Пример 3. Разделить 15 на 13

Здесь период состоит из нескольких цифр, а именно из цифр 153846. Для наглядности период отделён синей линией. Сокращённая запись для данной периодической дроби будет выглядеть так:

Читается как: «одна целая сто пятьдесят три тысячи восемьсот сорок шесть в периоде».

Пример 4. Разделить 471 на 900

В этом примере период начинается не сразу, а после цифр 5 и 2. Сокращённая запись для данной периодической дроби будет выглядеть так:

Читается как: «ноль целых пятьдесят две сотых и три в периоде».

Виды периодических дробей

Периодические дроби бывают двух видов: чистые и смéшанные.

Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют чистой. Например, следующие периодические дроби являются чистыми:

Видно, что в этих дробях период начинается сразу после запятой.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют смéшанной. Например, следующие периодические дроби являются смéшанными:

Видно, что в этих дробях период начинается не сразу, а после некоторого количества не повторяющихся цифр.

Избавляемся от хвоста

Подобно тому, как ящерица избавляется от хвоста, мы можем избавить периодическую дробь от повторяющегося периода. Для этого достаточно округлить эту периодическую дробь до нýжного разряда.

Например, округлим периодическую дробь 0, (3) до разряда сотых. Чтобы увидеть сохраняемую и отбрасываемую цифру, временно запишем дробь 0, (3) не в сокращённом виде, а в полном:

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.

Значит периодическая дробь 0, (3) при округлении до сотых обращается в дробь 0,33

Округлим периодическую дробь 6,31 (6) до разряда тысячных.

Запишем эту дробь в полном виде, чтобы увидеть сохраняемую и отбрасываемую цифру:

Вспоминаем правило округления. Если при округлении чисел первая из отбрасываемых цифр 5, 6, 7, 8 или 9, то сохраняемая цифра увеличивается на единицу.

Значит периодическая дробь 6,31 (6) при округлении до тысячных обращается в дробь 6,317

Перевод чистой периодической дроби в обыкновенную дробь

Перевод периодической дроби в обыкновенную это операция, которую мы будем применять довольно редко. Тем не менее, для общего развития желательно изучить и этот момент. А начнём мы с перевода чистой периодической дроби в обыкновенную дробь.

Мы уже говорили, что если период в периодической дроби начинается сразу после запятой, то такую дробь называют чистой.

Чтобы перевести чистую периодическую дробь в обыкновенную дробь, нужно в числитель обыкновенной дроби записать период периодической дроби, а в знаменатель обыкновенной дроби записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби.

В качестве примера, рассмотрим чистую периодическую дробь 0, (3) — ноль целых и три в периоде. Попробуем перевести её в обыкновенную дробь.

Правило гласит, что в первую очередь в числитель обыкновенной дроби нужно записать период периодической дроби.

Итак, записываем в числителе период дроби 0, (3) то есть тройку:

Читайте также:  Bus interface что это

А в знаменатель нужно записать некоторое количество девяток. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (3).

В периодической дроби 0, (3) период состоит из одной цифры 3. Значит в знаменателе обыкновенной дроби записываем одну девятку:

Полученную дробь можно сократить на 3, тогда получим следующее:

Получили обыкновенную дробь .

Таким образом, при переводе периодической дроби 0, (3) в обыкновенную дробь получается

Пример 2. Перевести периодическую дробь 0, (45) в обыкновенную дробь.

Здесь период составляет две цифры 4 и 5. Записываем эти две цифры в числитель обыкновенной дроби:

А в знаменатель записываем некоторое количество девяток. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0, (45).

В периодической дроби 0, (45) период состоит из двух цифр 4 и 5. Значит в знаменателе обыкновенной дроби записываем две девятки:

Полученную дробь можно сократить эту дробь на 9, тогда получим следующее:

Таким образом, при переводе периодической дроби 0, (45) в обыкновенную дробь получается

Перевод смешанной периодической дроби в обыкновенную дробь

Чтобы перевести смешанную периодическую дробь в обыкновенную дробь, нужно в числителе записать разность в которой уменьшаемое это цифры, стоящие после запятой в периодической дроби, а вычитаемое — цифры, стоящие между запятой и первым периодом периодической дроби.

В знаменателе же нужно записать некоторое количество девяток и нулей. При этом, количество девяток должно быть равно количеству цифр в периоде периодической дроби, а количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

Например, переведём смешанную периодическую дробь 0,31 (6) в обыкновенную дробь.

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

Итак, записываем в числителе разность:

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,31 (6)

В дроби 0,31 (6) период состоит из одной цифры. Значит в знаменатель дроби записываем одну девятку:

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,31 (6) между запятой и периодом располагается две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

Получили выражение, которое вычисляется легко:

Получили ответ

Таким образом, при переводе периодической дроби 0,31 (6) в обыкновенную дробь, получается

Пример 2. Перевести смешанную периодическую дробь 0,72 (62) в обыкновенную дробь

Сначала запишем в числителе разность. Уменьшаемым будут все цифры, стоящие после запятой (включая и период), а вычитаемым будут цифры, стоящие между запятой и периодом:

Итак, записываем в числителе разность:

А в знаменателе запишем некоторое количество девяток и нулей. Количество девяток должно быть равно количеству цифр в периоде периодической дроби 0,72 (62)

В дроби 0,72 (62) период состоит из двух цифр. Значит в знаменатель дроби записываем две девятки:

Теперь дописываем количество нулей. Количество нулей должно быть равно количеству цифр между запятой и периодом периодической дроби.

В дроби 0,72 (62) между запятой и периодом располагаются две цифры. Значит в знаменателе дроби должно быть два нуля. Дописываем их:

Получили выражение, которое вычисляется легко:

Получили ответ

Значит при переводе периодической дроби 0,72 (62) в обыкновенную дробь, получается

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

21 thoughts on “Периодические дроби”

Когда же следующие уроки? Уже что-то долго ничего нету

Большое спасибо за урок! Откровенно говоря…эту тему не помню вообще…Будто ее и не было в школе О__о Ну или я ее проболела… (Перевод смешанной периодической дроби в обыкновенную дробь)

Вы бы хоть номер кошелька написали. А то столько трудились и никакой отдачи. С такими уроками никакой экзамен не страшен.

Спасибо большое Тэла, за столь добрый отзыв 😉
Если люди получают пользу от этих уроков — это уже отдача)

Огромное Вам спасибо за уроки! Всё объясняете доступно и наглядно! На ваших уроках готовлюсь поступать на ФИТ на программиста. Хорошо бы еще алгебру выложили.)

Вы не могли бы объяснить логику алгоритма перевода периодической дроби в обычную?

Зачем в знаменателе ставятся девятки — заместно, например, округления числа, подставляемого в числитель, до последней цифры периода, и постановки степени 10 в знаменатель? Зачем, при переводе смешанной периодической дроби, производится соотв. вычитание и чем объясняется подстановка нулей и единиц в зависимости от принадлежности цифры к периоду??…

Спасибо большое за урок 🙂 Скажите пожалуйсто при округлении(когда избавляемся от хвоста) откуда знать до каких разряд надо округлять?

Вот и здесь последняя задача говорит округлить до разряда сотых,а почему не до десятых(например)?

зависит от задачи, которую решаете. Если в задаче сказано округлять до десятых, значит округляете до десятых. Если сказано округлять до сотых — округляете до сотых

Спасибо за ответ . Я даже не знаю как вас зовут,но уверен вы очень хороший человек,раз вы уделяете время для других. Кстати я советую друзья посешать этот сайт,как тут нигде не обясняют.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector