No Image

Угол между отрезками на плоскости

СОДЕРЖАНИЕ
2 просмотров
11 марта 2020

Нахождение координат и длин вектора.
Вычисление угла между векторами.
Составление уравнение плоскости по трем точкам.

Решение задач с доказательством.

Для того, чтобы успешно решать задачи методом координат, полезно помнить:

Чтобы задать вектор, проходящий черерз 2 точки, нужно из координат второй точки вычесть координаты первой точки.

Чтобы найти длину вектора, нужно извлечь корень квадратный из суммы квадратов его координат.

Задача. Найти координаты и длины векторов AB, BC, AC, если точки имееют координаты А = (5; 8; 3), B = (1; 0; −3), C = (−2; 5; −1).

AB = (1−5; 0-8; −3−3) = (−4; −8; −6)

AC = (−2−5; 5−8; −1−3) = (−7; −3; −4)

BC = (1−(−2); 0−5; −1−3) = (3; −5; −4)

Для нахождения угла между двумя векторами a = (x1; y1; z1) и b = (x2; y2; z2):

Задача. Найдите площадь треугольника, ограниченную точками A = (−4; 4; 4), B = (3; 1; 0), C = (−1; 0; 6).

  1. Находим координаты векторов.
  2. Вычисляем косинус угла между векторами.
  3. Через основное тригометрическое тождество получаем синус.
  4. Подставляем в формулу площади.

AB = (3−(−4); 1−4; 0−4) = (7; −3; −4)

AC = (−1−(−4); 0−4; 6−4) = (3; −4; 2)

Задача. Задайте уравнение плоскости, проходящей через точки A = ( − 4; 4; 4), B = (3; 1; 0), C = ( − 1; 0; 6).

  1. Находим координаты векторов.
  2. Задаем матрицу плоскости.
  3. Вычисляем ее определитель, это и есть уравнение плоскости.

AB = (3−(−4); 1−4; 0−4) = (7; −3; −4)

Первая строчка заполняется переменными x, y, z, и из них вычитаются координаты любой точки плоскости. В данном случае вычитается точка С = ( − 1; 0; 6). Тогда получится такая строка: (x−(−1); y − 0; z−6).

Вторая строчка – координаты первого вектора.

Третья строчка – координаты второго вектора (нет разницы какой из векторов задавать во второй строчке, а какой в третьей).

Четвертая заполняется аналогично первой.

Пятая – аналогично второй.

Теперь перемножаем все значения на одном синем отрезке и складываем с другими значениями на других отрезках:

Аналогично делаем с зелеными отрезками:

Осталось из значений синих отрезков вычесть значения зеленых отрезков:

= −22х −26y − 19z + 92

−22х −26y −19z + 92 – искомое уравнение плоскости, проходящей через точки A = (−4; 4; 4), B = (3; 1; 0), C = (−1; 0; 6).

P.s. Если вам кажется, что это сложно, то огорчу вас. Одна из первых тем (самых простых), которые вы будите проходить на первом курсе любого университета – это матрицы, так что можно немного облегчить себе жизнь и разобраться заранее.

Задача. Найдите угол между плоскостью, проходящей через точки A = ( − 4; 4; 4), B = (3; 1; 0), C = ( − 1; 0; 6), и плоскостью, заданную уравнением

14x + 6y − 27z + 51 = 0.

  1. Задаем уравнение плоскости, проходящей через 3 точки ( нашли в предыдущей задаче).
  2. Находим косинус угла между плоскостями ( формула аналогична косинусу угла между прямыми).
Читайте также:  Как перекодировать текст в utf 8

Определение угла между прямыми

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k 1· k 2 = 0), то прямые перпендикулярны.

Соответственно легко найти угол между прямыми

tg γ = tg ( α – β ) = tg α – tg β 1 + tg α ·tg β = k 1 – k 2 1 + k 1· k 2

Угол между прямыми через направляющие векторы этих прямых

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано параметрически

x = l t + a y = m t + b

то вектор направляющей имеет вид

Если уравнение прямой задано как

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = – C B значит точка на прямой имеет координаты K(0, – C B ), при y = 0 => x = – C A значит точка на прямой имеет координаты M(- C A , 0). Вектор направляющей KM = .

Если дано каноническое уравнение прямой

то вектор направляющей имеет вид

Если задано уравнение прямой с угловым коэффициентом

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b ), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b ). Вектор направляющей KM =

Угол между прямыми через векторы нормалей этих прямых

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано как

то вектор нормали имеет вид

Если задано уравнение прямой с угловым коэффициентом

то вектор нормали имеет вид

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

sin φ = | a · b | | a | · | b |

Примеры задач на вычисления угла между прямыми на плоскости

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k 1 – k 2 1 + k 1· k 2 = 2 – (-3) 1 + 2·(-3) = 5 -5 = 1

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор <1; 2>, для второй прямой направляющий вектор

cos φ = |1 · 2 + 2 · 1| 1 2 + 2 2 · 2 2 + 1 2 = 4 5 · 5 = 0.8

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2 x + 3 y = 0 => y = – 2 3 x ( k 1 = – 2 3 )

x – 2 3 = y 4 => y = 4 3 x – 8 3 ( k 2 = 4 3 )

tg γ = k 1 – k 2 1 + k 1· k 2 = – 2 3 – 4 3 1 + (- 2 3 )· 4 3 = – 6 3 1 – 8 9 = 18

Угол между прямыми в пространстве

cos φ = | a · b | | a | · | b |

Если дано каноническое уравнение прямой

то направляющий вектор имеет вид

Если уравнение прямой задано параметрически

Читайте также:  Интеграл котангенса в квадрате

x = l t + a y = m t + b z = n t + c

то направляющий вектор имеет вид

Решение: Так как прямые заданы параметрически, то <2; 1; -1>- направляющий вектор первой прямой, <1; -2; 0>направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0| 2 2 + 1 2 + (-1) 2 · 1 2 + (-2) 2 + 0 2 = 0 6 · 5 = 0

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор <3; 4; 5>.

Преобразуем второе уравнение к каноническому вид.

1 – 3 y = 1 + y -1/3 = y – 1/3 -1/3

3 z – 5 2 = z – 5/3 2/3

Получено уравнение второй прямой в канонической форме

x – 2 -2 = y – 1/3 -1/3 = z – 5/3 2/3

<-2; – 1 3 ; 2 3 >- направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(- 1 3 ) + 5· 2 3 3 2 + 4 2 + 5 2 · (-2) 2 + (- 1 3 ) 2 + ( 2 3 ) 2 = -6 – 4 3 + 10 3 9 + 16 + 25 · 4 + 1 9 + 4 9 = -4 50 · 41/9 = 12 5 82 = 6 82 205

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Определение. Если заданы две прямые y = k1 x + b1 , y = k2x + b2 , то острый угол между этими прямыми будет определяться как

.

Две прямые параллельны, если k1 = k2 . Две прямые перпендикулярны, если k1 = -1/ k2 .

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В1 у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = λА, В1 = λВ. Если еще и С1 = λС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой

Определение. Прямая, проходящая через точку М11 , у1 ) и перпендикулярная к прямой у = kx + b представляется уравнением:

Расстояние от точки до прямой

Теорема. Если задана точка М(х , у ), то расстояние до прямой Ах + Ву + С =0 определяется как

.

Доказательство. Пусть точка М 11, у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1 :

(1)

Координаты x1 и у1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду:

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.

k 1 = -3; k 2 = 2; tgφ = ; φ= p /4.

Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Решение. Находим: k 1 = 3/5, k2 = -5/3, k 1* k 2 = -1, следовательно, прямые перпендикулярны.

Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.

Читайте также:  В какой программе сделать презентацию со слайдами

Решение. Находим уравнение стороны АВ: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b . k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3 x + 2 y – 34 = 0.

Криві та поверхні другого порядку. Канонічні рівняння кривих другого порядку (еліпс, коло, гіпербола, парабола). Їх властивості.

Кривые второго порядка. Канонический вид уравнений второго порядка.

Кривая второго порядка — геометрическое место точек на плоскости, прямоугольные координаты

которых удовлетворяют уравнению вида:

Инварианты кривых второго порядка.

Вид кривой зависим от 4 инвариантов, приведенных ниже:

– инварианты относительно поворота и сдвига системы координат:

– инвариант относительно поворота системы координат (полуинвариант):

Для изучения кривых второго порядка рассматриваем произведение А*С.

Общее уравнение кривой второго порядка выглядит так:

– Если А*С > 0, то уравнение принимает вид уравнения эллиптического типа. Любое эллиптическое

уравнение – это уравнение или обычного эллипса, или же вырожденного эллипса (точки), или мнимого

эллипса (в таком случае уравнение не определяет на плоскости ни одного геометрического образа);

– Если А*С

Невырожденные кривые (Δ ≠ 0)

Вырожденные кривые (Δ = 0)

Две пересекающиеся прямые

Две параллельные прямые

Для центральной кривой в каноническом виде её центр (x, y) находится в начале координат.

Типові практичні завдання.

Знайти загальний розв’язок неоднорідної системи лінійних рівнянь за методом Гауса

Обчислити комплексні корені: .

Знайти ГМТ: .

З’ясувати, чи є вектор лінійною комбінацією векторів?

.

Знайти ранг системи векторів, базу та подати решту векторів у вигляді лінійної комбінації векторів з цієї бази ,.

Обчислити визначник: .

Обчислити значення многочлена від матриці.

Знайти обернену матрицю до матриці .

Знайти загальний розв’язок неоднорідної системи лінійних рівнянь та фундаментальну систему розв’язків відповідної однорідної СЛР.

.

Знайти ранг матриці в залежності від значення параметру .

.

Знайти найбільший спільний дільник многочленів і.

Визначити кратність кореня многочлена .

Відділити кратні корені многочлена

Побудувати многочлен найменшого степеня, який має корінь (-1) кратності 2; корені 3, 2-i,I– прості, якщо коефіцієнти цього многочлена – дійсні, комплексні.

Знайти базиси суми та перетину підпросторів та.

Довести, що многочлени утворюють базис простору, якщо.

Довести, що кожна з двох систем векторів утворює базис, та побудувати матрицю переходу від базису Е до Е´, де

Е: ,, ; Е´:,,.

Розглянемо площину .

– Знайти відстань від до площини ;

– Скласти рівняння площини, що проходить через А паралельно площині.

Відомі координати вершин тетраедра . – Обчислитиоб’єм тетраедра. – Скласти загальне рівняння однієї грані та канонічне рівняння одного ребра тетраедра. – Обчислити площу трикутника АВС.

Комментировать
2 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector