No Image

Уравнение движения материальной точки вдоль оси

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Движение материальной точки в пространстве – это изменение ее положения относительно других тел с течением времени.

Имеет смысл говорить только о движении в некоторой системе отсчета.

Система отсчета. Системы координат

Точки, располагаемые в пустом пространстве, не различаются. Поэтому о точке рассуждают при условии нахождения в ней материальной точки. Определить ее положение можно при помощи измерений в системе координат, где и проводится нахождение пространственных координат. Если рассматривать в виде примера поверхность Земли, то следует учитывать широту и долготу располагаемой точки.

В теории используется декартова прямоугольная система координат, где определение точки возможно при наличии радиус-вектора r и трех проекций x , y , z – ее координат. Могут быть применены другие:

  • сферическая система с положением точек и ее радиус-вектором, определенных координатами r , υ , φ ;
  • цилиндрическая система с координатами p , z , α ;
  • на полярной плоскости с параметрами r , φ .

В теории зачастую не принимают во внимание реальную систему отсчета, а сохраняют только ту, которая представляет собой ее математическую модель, применяемую во время практических измерений.

Кинематическое уравнение движения материальной точки

Любая система отсчета или координат предполагает определение координат материальной точки в любой момент времени.

При условии положения и определения материальной точки в данной системе отсчета считается, что ее движение задано или описано.

Это возможно при использовании кинематического уравнения движения:

Аналитически положение точки определяется совокупностью трех независимых между собой чисел. Иначе говоря, свободная точка имеет три степени свободы движения.

Ее перемещение по уравнению ( 1 ) определено, если имеется указанное положение в любой момент времени t . Для этого следует задавать декартовы координаты точки в качестве однозначных и непрерывных функций времени:

x ( t ) = x , y ( t ) = y , z ( t ) = z ( 2 ) .

Прямоугольные декартовы координаты x , y , z – это проекции радиус-вектора r ¯ , проведенного из начала координат. Очевидно, что длину и направление r ¯ можно найти из соотношений, где a , β , γ являются образованными радиус-вектором углами с координатными осями.

Равенства ( 2 ) считают кинематическими уравнениями движения материальной точки в декартовых координатах.

Они могут быть записаны в другой системе координат, которая связана с декартовой взаимно однозначным преобразованием. Если движение точки происходит в плоскости О х у , тогда применимы полярные координаты r , φ , относящиеся к декартовым преобразованиям. Данный случай подразумевает использование уравнения движения точки следующего вида:

r = r ( t ) , φ = φ ( t ) ( 3 ) .

Кинематическое уравнение движения точки в криволинейных координатах q 1 , q 2 , q 3 , связанных с декартовыми преобразованиями вида x = x ( q 1 , q 2 , q 3 ) , y = y ( q 1 , q 2 , q 3 ) , z = z ( q 1 , q 2 , q 3 ) ( 4 ) , записывается как

q 1 = q 1 ( t ) , q 2 = q 2 ( t ) , q 3 = q 3 ( t ) ( 5 ) .

Кривая радиус-вектора, описываемая концом вектора r при движении точки, совпадает с ее траекторией. Параметрическое уравнение траектории с t представлено кинематическими уравнениями ( 2 ) , ( 5 ) . Чтобы получить координатное уравнение траектории следует исключить время из кинематических уравнений.

Определение движения точки возможно с помощью задания траектории и мгновенного положения точки на ней. Ее положение на кривой определяется с помощью указания только одной величины: расстояния вдоль кривой от некоторой начальной точки с положительным направлением:

Это и есть уравнение движения точки по траектории. Способ его задания относят к естественному или траекторному.

Понятия координатного и естественного способа задания движения точки физически эквивалентны. С математической стороны это рассматривают как возможность применения разных методов, исходя из случая математической задачи.

Задание такого закона возможно аналитическим, графическим путем или с использованием таблицы, последние два из которых зачастую рассматривают в виде графиков и расписаний движений поездов.

Дано уравнение движения материальной точки x = 0 , 4 t 2 . Произвести запись формулы зависимости υ x ( t ) , построить график зависимости скорости от времени. На графике отметить площадь, численно равную пути, пройденному точкой за 4 секунды, произвести вычисление.

Дано: x = 0 , 4 t 2 , t = 4 c

Найти: υ x ( t ) , S – ?

Решение

При решении необходимо учитывать зависимость скорости от времени:

υ x = υ 0 x + a x t .

Зависимость координаты от времени и сравнение уравнения с заданным принимает вид:

x = x 0 + υ 0 x t + a x t 2 2 , x = 0 , 4 t 2 .

Очевидно, что x 0 = 0 , υ 0 x = 0 , a x = 0 , 8 м / с 2 .

Читайте также:  Система электронного документооборота что это

После подстановки данных в уравнение:

Определим точки, изобразим график:

υ x = 0 , t = 0 , υ x = 4 , t = 5

Путь, по которому двигалось тело, равняется площади фигуры, ограниченной графиком, и находится с помощью формулы:

Пример 1. Уравнение движения материальной точки вдоль оси имеет вид x = A + Bt + Ct 3 , где А = 2 м, В = 1 м/с, С = – 0,5 м/с 3 . Найти координату х, скорость и ускорение точки в момент времени t = 2с.

Решение. Координату xнайдем, подставив в уравнение движения числовые значения коэффициентов A, B и C и времени t:

x = (2 + 1×2 – 0,5×2 3 )м = 0.

Мгновенная скорость относительно оси хесть первая производная от координаты по времени:

.

Ускорение точки найдем, взяв первую производную от скорости по времени:

В момент времени t = 2 с

= (1 – 3×0,5×2 2 ) м/c = – 5 м/c;

= 6(- 0,5) × 2 м/с 2 = – 6 м/с 2 .

Пример 2. Тело вращается вокруг неподвижной оси по закону j = A + Bt + Ct 2 , где A= 10 рад, В = 20 рад/с, С = – 2 рад/с 2 . Найти полное ускорение точки, находящейся на расстоянии г=0,1 м от оси вращения, для момента времени t =4 с.

Решение. Полное ускорение точки, движущейся по кривой линии, может быть найдено как геометрическая сумма тангенциального ускорения , направленного по касательной к траектории, и нормального ускорения , направленного к центру кривизны траектории (рис.1):

Так как векторы и взаимно перпендикулярны, то модуль ускорения

(1)

Модули тангенциального и нормального ускорения точки вращающегося тела выражаются формулами

где w – модуль угловой скорости тела; e – модуль его углового ускорения.

Подставляя выражения и в формулу (1), находим

. (2)

Угловую скорость w найдем, взяв первую производную угла поворота по времени:

В момент времени t = 4 с модуль угловой скорости

w = [20 + 2(-2)4] рад/с = 4 рад/с.

Угловое ускорение найдем, взяв первую производную от угловой скорости по времени:

= 2 C = – 4 рад/с 2 .

Подставляя значения w, e и r в формулу (2), получаем

м/с = 1,65 м/с 2 .

Пример 3. Шар массой m1, движущийся горизонтально с некоторой скоростью , столкнулся с неподвижным шаром массой m2. Шары абсолютно упругие, удар прямой, центральный. Какую долю e своей кинетической энергии первый шар передал второму?

Решение. Доля энергии, переданной первым шаром второму, выразится соотношением

(1)

где Т1 – кинетическая энергия первого шара до удара; u2 и Т2 – скорость и кинетическая энергия второго шара после удара.

Как видно из формулы (1), для определения e надо найти u2. Согласно условию задачи импульс системы двух шаров относительно горизонтального направления не изменяется и механическая энергия шаров в другие виды не переходит. Пользуясь этим, найдем:

(2)

(3)

Решим совместно уравнения (2) и (3):

Подставив это выражение u2 в формулу (1) и сократив на u1 и m1, получим

Из найденного соотношения видно, что доля переданной энергии зависит только от масс сталкивающихся шаров.

Пример 4. Через блок в виде сплошного диска, имеющего массу m= 80г (рис.2), перекинута тонкая гибкая нить, к концам которой подвешены грузы с массами m1 = 100г и m2 = 200г. Определить ускорение, с которым будут двигаться грузы, если их предоставить самим себе. Трением и массой нити пренебречь.

Решение: Рассмотрим силы, действующие на каждый груз и на блок в отдельности. На каждый груз действуют две силы: сила тяжести и сила упругости (сила натяжения нити). Направим ось х вертикально вниз и напишем для каждого груза уравнение движения (второй закон Ньютона) в проекциях на эту ось. Для первого груза

; (1)

для второго груза

(2)

Под действием моментов сил и относительно оси z перпендикулярной плоскости чертежа и направленной за чертеж, блок приобретает угловое ускорение e. Согласно основному уравнению динамики вращательного движения,

(3)

где – момент инерции блока (сплошного диска) относительно оси z.

Согласно третьему закону Ньютона, с учетом невесомости нити и . Воспользовавшись этим подставим в уравнение (3) вместо и выражения и , получив их предварительно из уравнений (1) и (2):

Читайте также:  Pascal язык программирования обучение с нуля самостоятельно

После сокращения на и перегруппировки членов найдем

(4)

Формула (4) позволяет массы m1, m2 и m выразить в граммах, как они даны в условии задачи, а ускорение – в единицах СИ. После подстановки числовых значений в формулу (4) получим

Пример 5. Ракета установлена на поверхности Земли для запуска в вертикальном направлении. При какой минимальной скорости u1, сообщенной ракете при запуске, она удалится от поверхности на расстояние, равное радиусу Земли (R=6,37×10 6 м)? Всеми силами, кроме силы гравитационного взаимодействия ракеты и Земли,пренебречь.

Решение. Со стороны Земли на ракету действует сила тяжести, являющаяся потенциальной силой. При неработающем двигателе под действием потенциальной силы механическая энергия ракеты изменяться не будет. Следовательно,

где Т1, П1 и Т2, П2 – кинетическая и потенциальная энергии ракеты после выключения двигателя в начальном (у поверхности Земли) и конечном (на расстоянии, равном радиусу Земли) состояниях.

Согласно определению кинетической энергии,

Потенциальная энергия ракеты в начальном состоянии

По мере удаления ракеты от поверхности Земли ее потенциальная энергия возрастает, а кинетическая – убывает. В конечном состоянии кинетическая энергия Т2 станет равной нулю, а потенциальная – достигнет максимального значения:

Подставляя выражения Т1, П1, Т2 и П2 в (1), получаем

Заметив, что GM/R 2 =g (g – ускорение свободного падения у поверхности Земли), перепишем эту формулу в виде

что совпадает с выражением для первой космической скорости.

м/с = 7,9 км/с.

Пример 6. Платформа в виде сплошного диска радиусом R=1,5 м и массой m1=180 кг вращается около вертикальной оси с частотой n=10 мин -1 . В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость u относительно пола помещения будет иметь человек, если он перейдет на край платформы?

Решение. Согласно условию задачи, момент внешних сил относительно оси вращения z, совпадающей с геометрической осью платформы, можно считать равным нулю. При этом условии проекция Lz момента импульса системы платформа-человек остается постоянной:

const, (1)

где Jz – момент инерции платформы с человеком относительно оси z;

w – угловая скорость платформы.

Момент инерции системы равен сумме моментов инерции тел, входящих в состав системы, поэтому в начальном состоянии а в конечном состоянии .

С учетом этого равенство (1) примет вид

(2)

где значения моментов инерции J1 и J2 платформы и человека соответственно относятся к начальному состоянию системы; и – к конечному.

Момент инерции платформы относительно оси z при переходе человека не изменяется: . Момент инерции человека относительно той же оси будет изменяться. Если рассматривать человека как материальную точку, то его момент инерции J2 в начальном состоянии (в центре платформы)можно считать равным нулю. В конечном состоянии (на краю платформы) момент инерции человека

Подставим в формулу (2) выражения моментов инерции, начальной угловой скорости вращения платформы с человеком (w = 2pn) и конечной угловой скорости (w ‘ = u/R, где u – скорость человека относительно пола):

После сокращения на R 2 и простых преобразований находим скорость

м/с.

Пример 7. Частица массой m = 0,01 кг совершает гармонические колебания с периодом Т = 2с. Полная энергия колеблющейся частицы Е = 0,1 мДж. Определить амплитуду А колебаний и наибольшее значение силы Fmax, действующей на частицу.

Решение. Для определения амплитуды колебаний воспользуемся выражением полной энергии частицы:

где w = 2p/Т. Отсюда амплитуда

(1)

Так как частица совершает гармонические колебания, то сила, действующая на нее, является квазиупругой и, следовательно, может быть выражена соотношением F = -kx, где k – коэффициент квазиупругой силы; х – смещение колеблющейся точки. Максимальной сила будет при максимальном смещении xmax, равном амплитуде:

Читайте также:  Бесплатные векторы для коммерческого использования

Коэффициент k выразим через период колебаний:

k = mw 2 = m×4p 2 /T 2 . (3)

Подставив выражения (1) и (3) и (2) и произведя упрощения, получим

0,045 м = 45 мм;

Пример 8.Складываются два колебания одинакового направления, выраженные уравнениями

где А1 = 3 см, А2 = 2 см, t1 = 1/6 с, t2 = 1/3 с, Т = 2 с. Построить векторную диаграмму сложения этих колебаний и написать уравнение результирующего колебания.

Решение. Для построения векторной диаграммы сложения двух колебаний одного направления надо фиксировать какой-либо момент времени. Обычно векторную диаграмму строят для момента времени t = 0. Преобразовав оба уравнения к канонической форме

Отсюда видно, что оба складываемых гармонических колебания имеют одинаковую циклическую частоту

.

Начальные фазы первого и второго колебаний соответственно равны

с -1 ;

Изобразим векторы А1 и А2. Для этого отложим отрезки длиной А1 = 3 см и А2 = 2 см под углами j1 = 30 о и j2 = 60 о к оси 0х. Результирующее колебание будет происходить с той же частотой w и амплитудой А, равной геометрической сумме амплитуд А1 и А2:А = А1 + А2. Согласно теореме косинусов:

Начальную фазу результирующего колебания можно также определить непосредственно из векторной диаграммы (рис. 3):

см = 4,84 см;

или j = 0,735 рад.

Так как результирующее колебание является гармоническим, имеет ту же частоту, что и слагаемые колебания, то его можно записать в виде

где А = 4,84 см, w = 3,14 с -1 , j = 0,735 рад.

1. Кинематическое уравнение движения материальной точки (центра масс твердого тела) вдоль оси x:

где f (t) – некоторая функция времени.

2. Средняя скорость:

.

3. Средняя путевая скорость:

,

где Ds – путь, пройденный точкой за интервал Dt. Путь Ds в отличие от разности координат ( ) не может убывать и принимать отрицательные значения, т.е. . Поэтому .

4. Мгновенная скорость:

.

5. Среднее ускорение:

.

6. Мгновенное ускорение:

.

7. Кинематическое уравнение движения материальной точки по окружности:

8. Угловая скорость:

.

9. Угловое ускорение:

.

10. Связь между линейными и угловыми величинами, характеризующими движение точки по окружности:

,

где n – линейная скорость; at и an – тангенциальное и нормальное ускорение; w – угловая скорость; e – угловое ускорение; R – радиус окружности.

11. Полное ускорение:

или .

12. Угол между полным ускорением и нормальным :

.

Динамика материальной точки и твердого тела

13. Импульс материальной точки m, движущейся поступательно со скоростью v:

.

14. Второй закон Ньютона:

где – сила, действующая на тело.

15. Основное уравнение динамики вращательного движения относительно неподвижной оси:

,

где M – результирующий момент внешних сил, действующих на тело; e – угловое ускорение; – момент инерции тела относительно оси вращения.

16. Моменты инерции некоторых тел массы m относительно оси, проходящей через центр масс:

а) стержня длины относительно оси, перпендикулярной стержню и проходящей через центр масс,

;

б) обруча (тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча (совпадающей с осью цилиндра),

,

где R – радиус обруча (цилиндра);

в) диска радиусом R относительно оси, перпендикулярной плоскости диска,

.

17. Момент импульса тела, вращающегося относительно неподвижной оси:

,

где w – угловая скорость тела.

18. Силы, рассматриваемые в механике:

а) сила упругости

,

где k – коэффициент упругости (в случае пружины – жесткость); x – абсолютная деформация;

где s – упругое напряжение, Е – модуль Юнга, e – относительная деформация;

;

в) сила гравитационного взаимодействия

,

где g – гравитационная постоянная; m1 и m2 – массы взаимодействующих тел; r – расстояние между телами (тела рассматриваются как материальные точки). В случае гравитационного взаимодействия силу можно выразить также через напряженность G гравитационного поля:

;

г) сила трения (скольжения)

,

где m – коэффициент трения; N – сила нормального давления.

Дата добавления: 2016-11-12 ; просмотров: 323 | Нарушение авторских прав

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector