No Image

Уравнения с фигурной скобкой

СОДЕРЖАНИЕ
1 просмотров
11 марта 2020

Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.

Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.

Например, система уравнений может быть задана следующим образом.

x + 5y = 7
3x − 2y = 4

Чтобы решить систему уравнений, нужно найти и « x », и « y ».

Как решить систему уравнений

Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.

Способ подстановки
или
«железобетонный» метод

Первый способ решения системы уравнений называют способом подстановки или «железобетонным».

Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.

Разберем способ подстановки на примере.

x + 5y = 7
3x − 2y = 4

Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».

Чтобы выразить неизвестное, нужно выполнить два условия:

  • перенести неизвестное, которое хотим выразить, в левую часть уравнения;
  • разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице.

Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.

При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.

x = 7 − 5y
3x − 2y = 4

Теперь, вместо « x » подставим во второе уравнение полученное выражение
« x = 7 − 5y » из первого уравнения.

x = 7 − 5y
3(7 − 5y) − 2y = 4

Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.

Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение « 3(7 − 5y) − 2y = 4 » отдельно. Вынесем его решение отдельно с помощью обозначения звездочка (*) .

x = 7 − 5y
3(7 − 5y) − 2y = 4 (*)

Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.

x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1

Ответ: x = 2; y = 1

Способ сложения

Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения. Вернемся к нашей системе уравнений еще раз.

x + 5y = 7
3x − 2y = 4

По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.

Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.

При сложения уравнений системы левая часть первого уравнения полностью складывается с левой частью второго уравнения, а правая часть полностью складывается с правой частью.

x + 5y = 7 (x + 5y) + (3x − 2y) = 7 + 4
+ => x + 5y + 3x − 2y = 11
3x − 2y = 4 4x + 3y = 11

При сложении уравнений мы получили уравнение « 4x + 3y = 11 ». По сути, сложение уравнений в исходном виде нам ничего не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.

Вернемся снова к исходной системе уравнений.

x + 5y = 7
3x − 2y = 4

Чтобы при сложении неизвестное « x » взаимноуничтожилось, нужно сделать так, чтобы в первом уравнении при « x » стоял коэффициент « −3 ».

Для этого умножим первое уравнение на « −3 ».

При умножении уравнения на число, на это число умножается каждый член уравнения.

x + 5y = 7 | ·(−3)
3x − 2y = 4
x · (−3) + 5y · (−3) = 7 · (−3)
3x − 2y = 4
−3x −15y = −21
3x − 2y = 4

Теперь сложим уравнения.

−3x −15y = −21 (−3x −15y ) + (3x − 2y) = −21 + 4
+ => − 3x − 15y + 3x − 2y = −21 + 4
3x − 2y = 4 −17y = −17 |:(−17)
y = 1

Мы нашли « y = 1 ». Вернемся к первому уравнению и подставим вместо « y » полученное числовое значение и найдем « x ».

x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1

Ответ: x = 2; y = 1

Пример решения системы уравнения способом подстановки

x − 3y = 17
x − 2y = −13

Выразим из первого уравнения « x ».

x = 17 + 3y
x − 2y = −13

Подставим вместо « x » во второе уравнение полученное выражение.

x = 17 + 3y
(17 + 3y) − 2y = −13 (*)

Подставим в первое уравнение полученное числовое значение « y = −30 » и найдем « x ».

x = 17 + 3y
y = −30
x = 17 + 3 · (−30)
y = −30
x = 17 −90
y = −30
x = −73
y = −30

Ответ: x = −73; y = −30

Пример решения системы уравнения способом сложения

Рассмотрим систему уравнений.

3(x − y) + 5x = 2(3x − 2)
4x − 2(x + y) = 4 − 3y

Раскроем скобки и упростим выражения в обоих уравнениях.

3x − 3y + 5x = 6x − 4
4x − 2x − 2y = 4 − 3y
8x − 3y = 6x − 4
2x −2y = 4 − 3y
8x − 3y − 6x = −4
2x −2y + 3y = 4
2x − 3y = −4
2x + y = 4

Мы видим, что в обоих уравнениях есть « 2x ». Наша задача, чтобы при сложении уравнений « 2x » взаимноуничтожились и в полученном уравнении осталось только « y ».

Для этого достаточно умножить первое уравнение на « −1 ».

2x − 3y = −4 | ·(−1)
2x + y = 4
2x · (−1) − 3y · (−1) = −4 · (−1)
2x + y = 4
−2x + 3y = 4
2x + y = 4

Теперь при сложении уравнений у нас останется только « y » в уравнении.

−2x + 3y = 4 (−2x + 3y ) + (2x + y) = 4 + 4
+ => − 2x + 3y + 2x + y = 4 + 4
2x + y = 4 4y = 8 | :4
y = 2

Подставим в первое уравнение полученное числовое значение « y = 2 » и найдем « x ».

В данной статье рассказывается о скобках в математике и рассматриваются виды и применения, термины и методы использования при решении или для описания материала. В заключение будут решены подобные примеры с подробными комментариями.

Основные виды скобок, обозначения, терминология

Для решения заданий в математике используются три вида скобок: ( ) , [ ] , < >. Реже встречаются скобки такого вида ] и [ , называемые обратными, или и > , то есть в виде уголка. Их применение всегда парное, то есть имеется открывающаяся и закрывающаяся скобка в любом выражении, тогда оно имеет смысл . скобки позволяют разграничить и определить последовательность действий.

Читайте также:  Powershell установка hyper v

Скобки для указания порядка выполнения действий

Основное предназначение скобок – указание порядка выполняемых действий. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.

Рассмотрим на примере заданное выражение. Если дан пример вида 5 + 3 – 2 , тогда очевидно, что действия выполняются последовательно. Когда это же выражение записывается со скобками, тогда их последовательность меняется. То есть при ( 5 + 3 ) – 2 первое действие выполняется в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5 + ( 3 – 2 ) , тогда в начале производятся вычисления в скобках, после чего сложение с числом 5 . На исходное значение в этом случае оно не повлияет.

Рассмотрим пример, который покажет, как при изменении положения скобок может измениться результат. Если дано выражение 5 + 2 · 4 , видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид ( 5 + 2 ) · 4 , то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.

Выражения могут содержать несколько пар скобок, тогда выполнения действий начинаются с первой. В выражении вида ( 4 + 5 · 2 ) − 0 , 5 : ( 7 − 2 ) : ( 2 + 1 + 12 ) видно, что первым делом выполняются действия в скобках, после чего деления, а в конце вычитание.

Существуют примеры, где имеются вложенные сложные скобки вида 4 · 6 – 3 + 8 : 2 и 5 · ( 1 + ( 8 – 2 · 3 + 5 ) – 2 ) ) – 4 . Тогда начинается выполнение действий с внутренних скобок. Далее производится продвижение к внешним.

Если имеется выражение 4 · 6 – 3 + 8 : 2 , тогда очевидно, что в первую очередь выполняются действия в скобках. Значит, следует отнять 3 от 6 , умножить на 4 и прибавить 8 . В конце следует разделить на 2 . Только так можно получить верный ответ.

На письме могут быть использованы скобки разных размеров. Это делается для удобства и возможности отличия одной пары от другой. Внешние скобки всегда большего размера, чем внутренние. То есть получаем выражение вида 5 – 1 : 2 + 1 2 + 3 – 1 3 · 2 · 3 – 4 . Редко встречается применение выделенных скобок ( 2 + 2 · ( 2 + ( 5 · 4 − 4 ) ) ) · ( 6 : 2 − 3 · 7 ) · ( 5 − 3 ) или применяют квадратные, например, [ 3 + 5 · ( 3 − 1 ) ] · 7 или фигурные < 5 + [ 7 − 12 : ( 8 − 5 ) : 3 ] + 7 − 2 >: [ 3 + 5 + 6 : ( 5 − 2 − 1 ) ] .

Перед тем, как приступить к решению, важно правильно определить порядок действий и разобрать все необходимые пары скобок. Для этого следует добавлять разные виды скобок или менять их цвет. Пометка скобки другим цветом удобна для решения, но занимает много времени, поэтому на практике чаще всего применяют круглые, фигурные и квадратные скобки.

Отрицательные числа в скобках

Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5 + ( − 3 ) + ( − 2 ) · ( − 1 ) , 5 + – 2 3 , 2 5 7 – 5 + – 6 7 3 · ( – 2 ) · – 3 , 5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.

Скобки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида − 5 · 4 + ( − 4 ) : 2 , то очевидно, что знак минуса перед 5 можно не заключать в скобки, а при 3 – 0 , 4 – 2 , 2 · 3 + 7 + 3 – 1 : 2 число 2 , 2 записано вначале, значит скобки также не нужны. Со скобками можно записать выражение ( − 5 ) · 4 + ( − 4 ) : 2 или 3 – 0 , 4 – 2 , 2 · 3 + 7 + 3 – 1 : 2 . Запись, где имеются скобки, считается более строгой.

Знак минуса может находиться не только перед числом, но и перед переменными, степенями, корнями, дробями, функциями, тогда их следует заключить в скобки. Это такие записи, как 5 · ( − x ) , 12 : ( − 22 ) , 5 · – 3 + 7 – 1 + 7 : – x 2 + 1 3 , 4 3 4 – – x + 2 x – 1 , 2 · ( – ( 3 + 2 · 4 ) , 5 · ( – log 3 2 ) – ( – 2 x 2 + 4 ) , sin x · ( – cos 2 x ) + 1

Скобки для выражений, с которыми выполняются действия

Использование круглых скобок связано с указанием в выражении действий, где имеется возведение в степень, взятие производной, функции. Они позволяют упорядочивать выражения для удобства дальнейшего решения.

Скобки в выражениях со степенями

Выражение со степенью не всегда следует заключать в скобки, так как степень располагается надстрочно. Если имеется запись вида 2 x + 3 , то очевидно, что х + 3 – это показатель степени. Когда степень записывается в виде знака ^, тогда остальное выражение следует записывать с добавлением скобок, то есть 2 ^ ( x + 3 ) . Если записать это же выражение без скобок, то получится совсем другое выражение. При 2 ^ x + 3 на выходе получим 2 x + 3 .

Основание степени не нуждается в скобках. Поэтому запись принимает вид 0 3 , 5 x 2 + 5 , y 0 , 5 . Если в основании имеется дробное число, тогда можно использовать круглые скобки. Получаем выражения вида ( 0 , 75 ) 2 , 2 2 3 32 + 1 , ( 3 · x + 2 · y ) – 3 , log 2 x – 2 – 1 2 x – 1 .

Если выражение основания степени не взять в скобки, тогда показатель может относиться ко всему выражению, что повлечет за собой неправильное решение. Когда имеется выражение вида x 2 + y , а – 2 – это его степень, то запись примет вид ( x 2 + y ) – 2 . При отсутствии скобок выражение приняло бы вид x 2 + y – 2 , что является совершенно другим выражением.

Если основанием степени является логарифм или тригонометрическая функция с целым показателем, тогда запись приобретает вид sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g , a r c c t g , log , ln или l g . При записи выражения вида sin 2 x , a r c cos 3 y , ln 5 e и log 5 2 x видим, что скобки перед функциями не меняют значения всего выражения, то есть они равноценны. Получаем записи вида ( sin x ) 2 , ( a r c cos y ) 3 , ( ln e ) 5 и log 5 x 2 . Допустимо опущение скобок.

Скобки в выражениях с корнями

Использование скобок в подкоренном выражении бессмысленно, так как выражение вида x + 1 и x + 1 являются равнозначными. Скобки не дадут изменений при решении.

Скобки в выражениях с тригонометрическими функциями

Если имеются отрицательные выражения у функций типа синус, косинус, тангенс, котангенс, арксинус, арккосинус, арктангенс, арккотангенс, тогда необходимо использовать круглые скобки. Это позволит правильно определить принадлежность выражения к имеющейся функции. То есть получим записи вида sin ( − 5 ) , cos ( x + 2 ) , a r c t g 1 x – 2 2 3 .

При записи sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g и a r c c t g при имеющемся числе скобки не используют. Когда в записи присутствует выражение, тогда имеет смысл их поставить. То есть sin π 3 , t g x + π 2 , a r c sin x 2 , a r c t g 3 3 с корнями и степенями, cos x 2 – 1 , a r c t g 3 2 , c t g x + 1 – 3 и подобные выражения.

Если в выражении содержатся кратные углы типа х , 2 х , 3 х и так далее, скобки опускаются. Разрешено записывать в виде sin 2 x , c t g 7 x , cos 3 α . Во избежание двусмысленности скобки можно добавить в выражение. Тогда получаем запись вида sin ( 2 · x ) : 2 вместо sin 2 · x : 2 .

Скобки в выражениях с логарифмами

Чаще всего все выражения логарифмической функции заключаются в скобки для дальнейшего правильного решения. То есть получаем ln ( e − 1 + e 1 ) , log 3 ( x 2 + 3 · x + 7 ) , l g ( ( x + 1 ) · ( x − 2 ) ) . Опущение скобок разрешено в том случае, когда однозначно понятно, к какому выражению относится сам логарифм. Если есть дробь, корень или функция можно записывать выражения в виде log 2 x 5 , l g x – 5 , ln 5 · x – 5 3 – 5 .

Читайте также:  Net data provider for oracle

Скобки в пределах

При имеющихся пределах используют скобки для представления выражения самого предела. То есть при суммах, произведениях, частных или разностях принято записывать выражения в скобках. Получаем, что lim n → 5 1 n + n – 2 и lim x → 0 x + 5 · x – 3 x – 1 x + x + 1 : x + 2 x 2 + 3 . Опущение скобок предполагается, когда имеется простая дробь или очевидно, к какому выражению относится знак. Например, lim x → ∞ 1 x или lim x → 0 ( 1 + x ) 1 x .

Скобки и производная

При нахождении производной часто можно встретить применение круглых скобок. Если имеется сложное выражение, тогда вся запись берется в скобки . Например, ( x + 1 ) ‘ или sin x x – x + 1 .

Подынтегральные выражения в скобках

Если необходимо проинтегрировать выражение, то следует записать его в круглых скобках. Тогда пример примет вид ∫ ( x 2 + 3 x ) d x , ∫ – 1 1 ( sin 2 x – 3 ) d x , ∭ V ( 3 x y + z ) d x d y d z .

Скобки, отделяющие аргумент функции

При наличии функции чаще всего применяются круглые скобки для их обозначения. Когда дана функция f с переменной х , тогда запись принимает вид f ( x ) . Если имеются несколько аргументов функций, то такая функция получит вид F ( x , y , z , t ) .

Скобки в периодических десятичных дробях

Использование периода обусловлено применением скобок при записи. Сам период десятичной дроби заключается в скобки. Если дана десятинная дробь вида 0 , 232323 … тогда очевидно, что 2 и 3 мы заключаем в круглые скобки. Запись приобретает вид 0 , ( 23 ) . Это характерно для любой записи периодической дроби.

Скобки для обозначения числовых промежутков

Для того, чтобы изобразить числовые промежутки применяют скобки четырех видов: ( ) , ( ] , [ ) и [ ] . В скобках прописываются промежутки, в каких функция существует, то есть имеет решение. Круглая скобка означает, что число не входит в область определения, квадратная – входит. При наличии бесконечности принято изображать круглую скобку.

То есть при изображении промежутков получим, что ( 0 , 5 ) , [ − 0 , 5 , 12 ) , – 10 1 2 , – 5 2 3 , [ 5 , 700 ] , ( − ∞ , − 4 ] , ( − 3 , + ∞ ) , ( − ∞ , + ∞ ) . Не вся литература одинаково использует скобки. Есть случаи, когда можно увидеть запись такого вида ] 0 , 1 [ , что означает ( 0 , 1 ) или [ 0 , 1 [ , что значит [ 0 , 1 ) , причем смысл выражения не меняется.

Обозначения систем и совокупностей уравнений и неравенств

Системы уравнений, неравенств принято записывать при помощи фигурной скобки вида < . Это означает, что все неравенства или уравнения объединены этой скобкой. Рассмотрим на примере использования скобки. Система уравнений вида x 2 – 1 = 0 x 2 + x – 2 = 0 или неравенства с двумя переменными x 2 – y >0 3 x + 2 y ≤ 3 , cos x 1 2 x + π 3 = 0 2 x 2 – 4 ≥ 5 -система, состоящая из двух уравнений и одного неравенства.

Использование фигурных скобок относится к изображению пересечения множеств. При решении системы с фигурной скобкой фактически приходим к пересечению заданных уравнений. Квадратная скобка служит для объединения.

Уравнения и неравенства обозначаются [ скобкой в том случае, если необходимо изобразить совокупность. Тогда получаем примеры вида ( x – 1 ) ( x + 7 ) = 0 x – 2 = 12 + x 2 – x + 3 и x > 2 x – 5 y = 7 2 x + 3 y ≥ 1

Можно встретить выражения, где имеются и система и совокупность:

x ≥ 5 x 3 x > 4 , 5

Фигурная скобка для обозначения кусочной функции

Кусочная функция изображается при помощи одиночной фигурной скобки, где имеются формулы, определяющие функцию, содержащие необходимые промежутки. Посмотрим на примере формулы с содержанием промежутков типа x = x , x ≥ 0 – x , x 0 , где имеется кусочная функция.

Скобки для указания координат точки

Для того, чтобы изобразить координатные точки в виде промежутков, используют круглые скобки. Они могут быть расположены как на координатной прямой, так и в прямоугольной системе координат или n-мерном пространстве.

Когда координата записывается как А ( 1 ) , то означает, что точка А имеет координату со значением 1 , тогда Q ( x , y , z ) говорит о том, что точка Q содержит координаты x , y , z .

Скобки для перечисления элементов множества

Множества задаются при помощи перечисления элементов, входящих в его область. Это выполняется при помощи фигурных скобок, где сами элементы прописываются через запятую. Запись выглядит таким образом А = < 1 , 2 , 3 , 4 >. Видно, что множество состоит из значений, перечисленных в скобках.

Скобки и координаты векторов

При рассмотрении векторов в системе координат используется понятие координат вектора. То есть при обозначении используют координаты, которые записаны в виде перечисления в скобках.

Учебники предлагают два вида обозначения: a → 0 ; – 3 или a → 0 ; – 3 . Обе записи равнозначны и имеют значение координат 0 , – 3 . При изображении в трехмерном пространстве добавляется еще одна координата. Тогда запись выглядит так: A B → 0 , – 3 , 2 3 или A B → 0 , – 3 , 2 3 .

Обозначение координат может быть как со значком вектора на самом векторе, так и без. Но запись координат производится через запятую в виде перечисления. Запись принимает вид a = ( 2 , 4 , − 2 , 6 , 1 2 ) , где вектор обозначается в пятимерном пространстве. Реже можно увидеть обозначение двумерного пространства в виде a = 3 – 7

Скобки для указания элементов матриц

Частое применение скобок предусмотрено в матрицах. Все элементы фиксируются при помощи круглых скобок вида A = 4 2 3 – 3 0 0 12 .

Реже можно увидеть использование квадратных скобок.
Тогда матрица приобретает вид A = 4 2 3 – 3 0 0 12 .

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Для чего нужно уметь решать системы уравнений? Где они они могут пригодиться?

Все, что нужно знать о решении системы уравнений – в этой статье.

Помни, твоя цель – хорошо сдать ОГЭ или ЕГЭ и поступить в институт твоей мечты.

Let’s go. (Поехали!)

Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться, такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

СИСТЕМА УРАВНЕНИЙ И МЕТОДЫ ЕЕ РЕШЕНИЯ

Метод подстановки

Это самый простой метод, но зачастую – самый трудоемкий. Идея проста – нужно в одном из уравнений выразить одну переменную через другие, а затем полученное выражение подставить в остальные уравнения вместо этой переменной.

Затем точно так же выражаем и подставляем другую переменную и т.д., пока не получим уравнение с одной переменной. После его решения и нахождения одной из переменных – последовательно возвращаемся к ранее выраженным, подставляя найденные значения.

Непонятно? Давай рассмотрим на примере

Пример 1.

Из второго уравнения очень просто выразить :

Теперь подставим то, что получилось вместо в первое уравнение:

Мы получили уравнение с одной неизвестной, которое очень просто решить:

Читайте также:  Что значит производная не существует

А теперь вернемся к выраженному и подставим в него полученное значение :

Ответ:

Ответ, кстати, принято записывать как координаты, то есть в таком виде: . В случае трех неизвестных: , и так далее.

То есть ответ в нашем примере запишется так:

Ответ:

Попробуй сам решить несколько примеров методом подстановки:

Ответы:

1) Здесь проще всего выразить из второго уравнения неравенства –

, а затем подставить в первое.

Ответ:

2) Выражаем из второго уравнения и подставляем в первое.

Ответ:

3) Здесь лучше выразить из первого уравнения:

, а затем уже подставлять во второе.

Ответ:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки. Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера. Для этого сперва выразим в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно ):

Видно, что графики пересекаются в точке с координатами .

Графический метод – самый неточный. Практически его можно применять только для систем линейных уравнений (вида ), графиками которых являются прямые. Если же хотя бы одно из уравнений имеет более сложный вид (содержит квадрат, корень, логарифм и т.д.), то не рекомендуется использовать графический метод (лучше использовать его только для иллюстраций).

Метод сложения

Метод сложения основан на следующем: если сложить левые части двух (или больше) уравнений, полученное выражение будет равно сложенным правым частям этих же уравнений. То есть:

(но ни в коем случае не наоборот: )

Действительно, мы ведь имеем право прибавить к обеим частям уравнения одно и то же число, например, прибавим к первому уравнению число :

Но раз , в правой части можем заменить на :

Пример 2

Сложим эти уравнения (левые части друг с другом, и правые – тоже друг с другом):

Вот как! просто уничтожился в результате сложения. Скажу сразу, это и была цель всего действия: складываем уравнения только тогда, когда при этом получим более простое уравнение.

Остается теперь только подставить в любое уравнение вместо число :

Ответ:

Пример 3.

Очевидно, здесь сложение ничего не даст. Придется решать другим методом? Нет! Иначе метод сложения был бы полезен слишком редко. Мы ведь можем умножать любое уравнение на любое ненулевое число? Так давай умножим первое уравнение на такое число, чтобы потом при сложении какая-то переменная исчезла. Лучше всего умножить на :

Теперь можно складывать:

Теперь подставим в первое уравнение системы:

Ответ:

Теперь порешай сам (методом сложения):

Ответы:

1. На что здесь надо умножить, чтобы коэффициенты при x или y были противоположными? Хм. Как из получить или из получить ? Умножать на дробное число? Слишком громоздко получится. Но ведь можно умножить оба уравнения! Например, первое на , второе на :

Теперь, сложив уравнения, мы можем легко найти .

Подставляем в любое из уравнений и находим .

Ответ: .

2. Решать нужно аналогично первому примеру – сначала нужно умножить первое уравнение на , а второе на , и сложить.

Ответ: .

3. Первое умножаем на , а второе на и складываем.

Ответ: .

4. Умножать можно и на дроби, то есть делить. Умножим первое уравнение на , а второе на :

Теперь сложим уравнения:

Подставив в первое уравнение, найдем :

Ответ:

Тренировка без подсказок

Теперь попробуй сам определить наиболее рациональный способ решения, а затем проверь ответы. Подсказок уже не будет!

Ответы:

Как видишь, система уравнений – базовая, но не самая сложная тема, используй методы, описанные в этой статье, и ты без труда справишься с решением систем.

КРАТКОЕ ИЗЛОЖЕНИЕ РАЗДЕЛА И ОСНОВНЫЕ ФОРМУЛЫ

Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных:

Методы решения систем уравнений:

1. Решение методом подстановки

Нужно в одном из уравнений выразить одну переменную через другие, а затем полученное выражение подставить в остальные уравнения вместо этой переменной, повторять подобную процедуру пока не будут найдены все переменные.

2. Решение графическим методом

Если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Графический метод – самый неточный. Практически его можно применять только для систем линейных уравнений (вида ), графиками которых являются прямые. Если же хотя бы одно из уравнений имеет более сложный вид (содержит квадрат, корень, логарифм и т.д.), то не рекомендуется использовать графический метод (только для иллюстраций).

3. Решение методом сложения

Метод сложения основан на следующем: если сложить левые части двух (или больше) уравнений, полученное выражение будет равно сложенным правым частям этих же уравнений.

Но ни в коем случае не наоборот:

ТЕПЕРЬ ТЕБЕ СЛОВО.

Мы постарались объяснить что такое системы уравнений и как их решать.

Теперь хотелось бы послушать тебя.

Как тебе статья?

Получается ли у тебя решать системы уравнений?

У тебя есть вопросы? Предложения?

Напиши в комментариях.

И удачи на экзаменах!

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений.

можно кликнув по этой ссылке.

Комментарии

Помогите. Произошел сбой в системе мозга( Вы все хорошо разьясняете, но надо решить систему, где в уравнениях есть степени..и тут пошло(( первое уравнение системы: 5 в степени х минус 5 в степени у равно 100 второе уравнение системы: 5 в степени х-1 плюс 5 в степени у-1 равно 30 Если есть возможность, помогите подробно разобрать его..что бы не вызывались дальнейшие трудности

Решить подобную систему достаточно легко. Нужно преобразовать её в знакомый вид. Чтобы это сделать, для начала переделайте степени второго уравнения. 5^(x-1) +5^(y-1) = 30 5^x / 5 +5^y / 5 = 30 умножим уравнение на 5 5^x + 5^y = 150 переносим 5^y в правую часть. 5^x = 150 – 5^y Теперь подставляем получившееся уравнение в первое уравнение (обычный метод подстановки) 150 – 5^y – 5^y = 100 складываем подобные – 2* 5^y = – 50 делим на 2 – 5^y = – 25 5^y = 25 5^y = 5^2 y=2 Подставляем значение в любое из уравнений, которые были даны нам в начале 5^x – 5^y = 100 5^x – 5^2 = 100 5^x – 25 = 100 5^x = 125 5^x = 5^3 x=3 Ответ готов! Получилась пара чисел (3;2)

Комментировать
1 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
No Image Компьютеры
0 комментариев
Adblock detector