Степенные ряды, которые мы и станем использовать, сходятся равномерно, поэтому их можно почленно интегрировать по любому отрезку, лежащему внутри интервала сходимости. Схема решения подобных задач на вычисление интегралов с помощью рядов проста:
- Разложить подынтегральную функцию в функциональный ряд (обычно в ряд Маклорена).
- Произвести почленное интегрирование членов записанного в первом пункте функционального ряда.
- Вычислить сумму полученного во втором пункте числового ряда с заданной точностью $varepsilon$.
Задачи на вычисление интегралов с помощью рядов популярны у составителей типовых расчётов по высшей математике. Поэтому в данной теме мы разберём пять примеров, в каждом из которых требуется вычислить определенный интеграл с точностью $varepsilon$.
Вычислить $intlimits_<0>^<frac<1><2>>e^<-x^2>dx$ с точностью до $varepsilon=10^<-3>$.
Сразу отметим, что интеграл $int e^<-x^2>dx$ не берётся, т.е. первообразная подынтегральной функции не выражается через конечную комбинацию элементарных функций. Иными словами, стандартными способами (подстановка, интегрирование по частям и т.д.) первообразную функции $e^<-x^2>$ найти не удастся.
Для таких задач есть два варианта оформления, поэтому рассмотрим их отдельно. Условно их можно назвать "развёрнутый" и "сокращённый" варианты.
Развёрнутый вариант оформления
Запишем разложение функции $e^x$ в ряд Маклорена:
Данное разложение верно при всех $xin
Интегрируем полученное разложение на отрезке $left[0;frac<1><2>
ight]$:
Получили сходящийся знакочередующийся ряд. Это значит, что если для вычисления приближенного значения заданного интеграла взять $k$ членов полученного ряда, то погрешность не превысит модуля $(k+1)$-го члена ряда.
Согласно условию, точность $varepsilon=10^<-3>$. Так как $frac<1><42cdot<2^7>>=frac<1> <5376>of your page –>
Данный калькулятор позволит найти определенный интеграл онлайн.
Определенный интеграл – это разность значений первообразной для подынтегральной функции. Проще говоря, определенный интеграл численно равен площади части графика функции в определенных пределах, то есть площади криволинейной трапеции. Определенный интеграл можно вычислить по формуле Ньютона-Лейбница.
Для того чтобы найти определенный интеграл, нужно ввести верхнюю и нижнюю границы и подынтегральную функцию.
Калькулятор поможет найти решение определенных интегралов онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Основные функции |
: x^a
: Sqrt[x]
: x^(1/n)
: a^x
: Log[a, x]
: Log[x]
: cos[x] или Cos[x]
: sin[x] или Sin[x]
: tan[x] или Tan[x]
: cot[x] или Cot[x]
: sec[x] или Sec[x]
: csc[x] или Csc[x]
: ArcCos[x]
: ArcSin[x]
: ArcTan[x]
: ArcCot[x]
: ArcSec[x]
: ArcCsc[x]
: cosh[x] или Cosh[x]
: sinh[x] или Sinh[x]
: tanh[x] или Tanh[x]
: coth[x] или Coth[x]
: sech[x] или Sech[x]
: csch[x] или Csch[е]
: ArcCosh[x]
: ArcSinh[x]
: ArcTanh[x]
: ArcCoth[x]
: ArcSech[x]
: ArcCsch[x]
- [19.67] =19: integral part of (19.67) – выделяет целую часть числа (integerPart)
Для того, чтобы найти неопределенный интеграл от функции нужно написать в строке: f[x], x. Найти определенный интеграл
так же просто: f[x], либо e f(x), x=a..b.
Важно подчеркнуть, что калькулятор выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.
        Вариант 1     Вариант 2     Вариант 3     Вариант 4     Вариант 5     Вариант 6
        Вариант 7     Вариант 8     Вариант 9     Вариант 10     Вариант 11     Вариант 12
    Вариант 13     Вариант 14     Вариант 15     Вариант 16     Вариант 17     Вариант 18
    Вариант 19     Вариант 20     Вариант 21     Вариант 22     Вариант 23     Вариант 24
    Вариант 25     Вариант 26     Вариант 27     Вариант 28     Вариант 29     Вариант 30
        20.5 Вычислить интеграл с точностью до 0,001.
Решение.
        Разложим в ряд Маклорена
        Тогда
        и
        Интегрируем почленно
Это знакочередующийся ряд, удовлетворяющий условиям теоремы Лейбница.
        Следовательно, 
Ответ: